1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! # AVIF image serializer (muxer)
//!
//! ## Usage
//!
//! 1. Compress pixels using an AV1 encoder, such as [rav1e](//lib.rs/rav1e). [libaom](//lib.rs/libaom-sys) works too.
//!
//! 2. Call `avif_serialize::serialize_to_vec(av1_data, None, width, height, 8)`
//!
//! See [cavif](https://github.com/kornelski/cavif-rs) for a complete implementation.
mod boxes;
pub mod constants;
mod writer;
use crate::boxes::*;
use arrayvec::ArrayVec;
use std::io;
/// Config for the serialization (allows setting advanced image properties).
///
/// See [`Aviffy::new`].
pub struct Aviffy {
premultiplied_alpha: bool,
colr: ColrBox,
}
/// Makes an AVIF file given encoded AV1 data (create the data with [`rav1e`](//lib.rs/rav1e))
///
/// `color_av1_data` is already-encoded AV1 image data for the color channels (YUV, RGB, etc.).
/// The color image MUST have been encoded without chroma subsampling AKA YUV444 (`Cs444` in `rav1e`)
/// AV1 handles full-res color so effortlessly, you should never need chroma subsampling ever again.
///
/// Optional `alpha_av1_data` is a monochrome image (`rav1e` calls it "YUV400"/`Cs400`) representing transparency.
/// Alpha adds a lot of header bloat, so don't specify it unless it's necessary.
///
/// `width`/`height` is image size in pixels. It must of course match the size of encoded image data.
/// `depth_bits` should be 8, 10 or 12, depending on how the image was encoded (typically 8).
///
/// Color and alpha must have the same dimensions and depth.
///
/// Data is written (streamed) to `into_output`.
pub fn serialize<W: io::Write>(into_output: W, color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> io::Result<()> {
Aviffy::new().write(into_output, color_av1_data, alpha_av1_data, width, height, depth_bits)
}
impl Aviffy {
#[must_use]
pub fn new() -> Self {
Self {
premultiplied_alpha: false,
colr: Default::default(),
}
}
/// Set whether image's colorspace uses premultiplied alpha, i.e. RGB channels were multiplied by their alpha value,
/// so that transparent areas are all black. Image decoders will be instructed to undo the premultiplication.
///
/// Premultiplied alpha images usually compress better and tolerate heavier compression, but
/// may not be supported correctly by less capable AVIF decoders.
///
/// This just sets the configuration property. The pixel data must have already been processed before compression.
pub fn premultiplied_alpha(&mut self, is_premultiplied: bool) -> &mut Self {
self.premultiplied_alpha = is_premultiplied;
self
}
/// If set, must match the AV1 color payload, and will result in `colr` box added to AVIF.
/// Defaults to BT.601, because that's what Safari assumes when `colr` is missing.
/// Other browsers are smart enough to read this from the AV1 payload instead.
pub fn matrix_coefficients(&mut self, matrix_coefficients: constants::MatrixCoefficients) -> &mut Self {
self.colr.matrix_coefficients = matrix_coefficients;
self
}
/// If set, must match the AV1 color payload, and will result in `colr` box added to AVIF.
/// Defaults to sRGB.
pub fn transfer_characteristics(&mut self, transfer_characteristics: constants::TransferCharacteristics) -> &mut Self {
self.colr.transfer_characteristics = transfer_characteristics;
self
}
/// If set, must match the AV1 color payload, and will result in `colr` box added to AVIF.
/// Defaults to sRGB/Rec.709.
pub fn color_primaries(&mut self, color_primaries: constants::ColorPrimaries) -> &mut Self {
self.colr.color_primaries = color_primaries;
self
}
/// If set, must match the AV1 color payload, and will result in `colr` box added to AVIF.
/// Defaults to full.
pub fn full_color_range(&mut self, full_range: bool) -> &mut Self {
self.colr.full_range_flag = full_range;
self
}
/// Makes an AVIF file given encoded AV1 data (create the data with [`rav1e`](//lib.rs/rav1e))
///
/// `color_av1_data` is already-encoded AV1 image data for the color channels (YUV, RGB, etc.).
/// The color image MUST have been encoded without chroma subsampling AKA YUV444 (`Cs444` in `rav1e`)
/// AV1 handles full-res color so effortlessly, you should never need chroma subsampling ever again.
///
/// Optional `alpha_av1_data` is a monochrome image (`rav1e` calls it "YUV400"/`Cs400`) representing transparency.
/// Alpha adds a lot of header bloat, so don't specify it unless it's necessary.
///
/// `width`/`height` is image size in pixels. It must of course match the size of encoded image data.
/// `depth_bits` should be 8, 10 or 12, depending on how the image has been encoded in AV1.
///
/// Color and alpha must have the same dimensions and depth.
///
/// Data is written (streamed) to `into_output`.
pub fn write<W: io::Write>(&self, into_output: W, color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> io::Result<()> {
self.make_boxes(color_av1_data, alpha_av1_data, width, height, depth_bits).write(into_output)
}
fn make_boxes<'data>(&self, color_av1_data: &'data [u8], alpha_av1_data: Option<&'data [u8]>, width: u32, height: u32, depth_bits: u8) -> AvifFile<'data> {
let mut image_items = ArrayVec::new();
let mut iloc_items = ArrayVec::new();
let mut compatible_brands = ArrayVec::new();
let mut ipma_entries = ArrayVec::new();
let mut data_chunks = ArrayVec::new();
let mut irefs = ArrayVec::new();
let mut ipco = IpcoBox::new();
let color_image_id = 1;
let alpha_image_id = 2;
const ESSENTIAL_BIT: u8 = 0x80;
let color_depth_bits = depth_bits;
let alpha_depth_bits = depth_bits; // Sadly, the spec requires these to match.
image_items.push(InfeBox {
id: color_image_id,
typ: FourCC(*b"av01"),
name: "",
});
let ispe_prop = ipco.push(IpcoProp::Ispe(IspeBox { width, height }));
// This is redundant, but Chrome wants it, and checks that it matches :(
let av1c_color_prop = ipco.push(IpcoProp::Av1C(Av1CBox {
seq_profile: if color_depth_bits >= 12 { 2 } else { 1 },
seq_level_idx_0: 31,
seq_tier_0: false,
high_bitdepth: color_depth_bits >= 10,
twelve_bit: color_depth_bits >= 12,
monochrome: false,
chroma_subsampling_x: false,
chroma_subsampling_y: false,
chroma_sample_position: 0,
}));
// Useless bloat
let pixi_3 = ipco.push(IpcoProp::Pixi(PixiBox {
channels: 3,
depth: color_depth_bits,
}));
let mut prop_ids: ArrayVec<u8, 5> = [ispe_prop, av1c_color_prop | ESSENTIAL_BIT, pixi_3].into_iter().collect();
// Redundant info, already in AV1
if self.colr != Default::default() {
let colr_color_prop = ipco.push(IpcoProp::Colr(self.colr));
prop_ids.push(colr_color_prop);
}
ipma_entries.push(IpmaEntry {
item_id: color_image_id,
prop_ids,
});
if let Some(alpha_data) = alpha_av1_data {
image_items.push(InfeBox {
id: alpha_image_id,
typ: FourCC(*b"av01"),
name: "",
});
let av1c_alpha_prop = ipco.push(boxes::IpcoProp::Av1C(Av1CBox {
seq_profile: if alpha_depth_bits >= 12 { 2 } else { 0 },
seq_level_idx_0: 31,
seq_tier_0: false,
high_bitdepth: alpha_depth_bits >= 10,
twelve_bit: alpha_depth_bits >= 12,
monochrome: true,
chroma_subsampling_x: true,
chroma_subsampling_y: true,
chroma_sample_position: 0,
}));
// So pointless
let pixi_1 = ipco.push(IpcoProp::Pixi(PixiBox {
channels: 1,
depth: alpha_depth_bits,
}));
// that's a silly way to add 1 bit of information, isn't it?
let auxc_prop = ipco.push(IpcoProp::AuxC(AuxCBox {
urn: "urn:mpeg:mpegB:cicp:systems:auxiliary:alpha",
}));
irefs.push(IrefBox {
entry: IrefEntryBox {
from_id: alpha_image_id,
to_id: color_image_id,
typ: FourCC(*b"auxl"),
},
});
if self.premultiplied_alpha {
irefs.push(IrefBox {
entry: IrefEntryBox {
from_id: color_image_id,
to_id: alpha_image_id,
typ: FourCC(*b"prem"),
},
});
}
ipma_entries.push(IpmaEntry {
item_id: alpha_image_id,
prop_ids: [ispe_prop, av1c_alpha_prop | ESSENTIAL_BIT, auxc_prop, pixi_1].into_iter().collect(),
});
// Use interleaved color and alpha, with alpha first.
// Makes it possible to display partial image.
iloc_items.push(IlocItem {
id: color_image_id,
extents: [
IlocExtent {
offset: IlocOffset::Relative(alpha_data.len()),
len: color_av1_data.len(),
},
].into(),
});
iloc_items.push(IlocItem {
id: alpha_image_id,
extents: [
IlocExtent {
offset: IlocOffset::Relative(0),
len: alpha_data.len(),
},
].into(),
});
data_chunks.push(alpha_data);
data_chunks.push(color_av1_data);
} else {
iloc_items.push(IlocItem {
id: color_image_id,
extents: [
IlocExtent {
offset: IlocOffset::Relative(0),
len: color_av1_data.len(),
},
].into(),
});
data_chunks.push(color_av1_data);
};
compatible_brands.push(FourCC(*b"mif1"));
compatible_brands.push(FourCC(*b"miaf"));
AvifFile {
ftyp: FtypBox {
major_brand: FourCC(*b"avif"),
minor_version: 0,
compatible_brands,
},
meta: MetaBox {
hdlr: HdlrBox {},
iinf: IinfBox { items: image_items },
pitm: PitmBox(color_image_id),
iloc: IlocBox { items: iloc_items },
iprp: IprpBox {
ipco,
// It's not enough to define these properties,
// they must be assigned to the image
ipma: IpmaBox {
entries: ipma_entries,
},
},
iref: irefs,
},
// Here's the actual data. If HEIF wasn't such a kitchen sink, this
// would have been the only data this file needs.
mdat: MdatBox {
data_chunks,
},
}
}
#[must_use] pub fn to_vec(&self, color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> Vec<u8> {
let mut out = Vec::with_capacity(color_av1_data.len() + alpha_av1_data.map_or(0, |a| a.len()) + 410);
self.write(&mut out, color_av1_data, alpha_av1_data, width, height, depth_bits).unwrap(); // Vec can't fail
out
}
}
/// See [`serialize`] for description. This one makes a `Vec` instead of using `io::Write`.
#[must_use] pub fn serialize_to_vec(color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> Vec<u8> {
Aviffy::new().to_vec(color_av1_data, alpha_av1_data, width, height, depth_bits)
}
#[test]
fn test_roundtrip_parse_mp4() {
let test_img = b"av12356abc";
let avif = serialize_to_vec(test_img, None, 10, 20, 8);
let ctx = mp4parse::read_avif(&mut avif.as_slice(), mp4parse::ParseStrictness::Normal).unwrap();
assert_eq!(&test_img[..], ctx.primary_item_coded_data());
}
#[test]
fn test_roundtrip_parse_mp4_alpha() {
let test_img = b"av12356abc";
let test_a = b"alpha";
let avif = serialize_to_vec(test_img, Some(test_a), 10, 20, 8);
let ctx = mp4parse::read_avif(&mut avif.as_slice(), mp4parse::ParseStrictness::Normal).unwrap();
assert_eq!(&test_img[..], ctx.primary_item_coded_data());
assert_eq!(&test_a[..], ctx.alpha_item_coded_data());
}
#[test]
fn test_roundtrip_parse_avif() {
let test_img = [1,2,3,4,5,6];
let test_alpha = [77,88,99];
let avif = serialize_to_vec(&test_img, Some(&test_alpha), 10, 20, 8);
let ctx = avif_parse::read_avif(&mut avif.as_slice()).unwrap();
assert_eq!(&test_img[..], ctx.primary_item.as_slice());
assert_eq!(&test_alpha[..], ctx.alpha_item.as_deref().unwrap());
}
#[test]
fn test_roundtrip_parse_avif_colr() {
let test_img = [1,2,3,4,5,6];
let test_alpha = [77,88,99];
let avif = Aviffy::new()
.matrix_coefficients(constants::MatrixCoefficients::Bt709)
.to_vec(&test_img, Some(&test_alpha), 10, 20, 8);
let ctx = avif_parse::read_avif(&mut avif.as_slice()).unwrap();
assert_eq!(&test_img[..], ctx.primary_item.as_slice());
assert_eq!(&test_alpha[..], ctx.alpha_item.as_deref().unwrap());
}
#[test]
fn premultiplied_flag() {
let test_img = [1,2,3,4];
let test_alpha = [55,66,77,88,99];
let avif = Aviffy::new().premultiplied_alpha(true).to_vec(&test_img, Some(&test_alpha), 5, 5, 8);
let ctx = avif_parse::read_avif(&mut avif.as_slice()).unwrap();
assert!(ctx.premultiplied_alpha);
assert_eq!(&test_img[..], ctx.primary_item.as_slice());
assert_eq!(&test_alpha[..], ctx.alpha_item.as_deref().unwrap());
}