1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
use crate::{Error, Result, Shape};

#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Layout {
    shape: Shape,
    // The strides are given in number of elements and not in bytes.
    stride: Vec<usize>,
    start_offset: usize,
}

impl Layout {
    pub fn new(shape: Shape, stride: Vec<usize>, start_offset: usize) -> Self {
        Self {
            shape,
            stride,
            start_offset,
        }
    }

    pub fn contiguous_with_offset<S: Into<Shape>>(shape: S, start_offset: usize) -> Self {
        let shape = shape.into();
        let stride = shape.stride_contiguous();
        Self {
            shape,
            stride,
            start_offset,
        }
    }

    pub fn contiguous<S: Into<Shape>>(shape: S) -> Self {
        Self::contiguous_with_offset(shape, 0)
    }

    pub fn dims(&self) -> &[usize] {
        self.shape.dims()
    }

    pub fn shape(&self) -> &Shape {
        &self.shape
    }

    pub fn stride(&self) -> &[usize] {
        &self.stride
    }

    pub fn start_offset(&self) -> usize {
        self.start_offset
    }

    /// Returns the appropriate start and stop offset if the data is stored in a C
    /// contiguous (aka row major) way.
    pub fn contiguous_offsets(&self) -> Option<(usize, usize)> {
        if self.is_contiguous() {
            let start_o = self.start_offset;
            Some((start_o, start_o + self.shape.elem_count()))
        } else {
            None
        }
    }

    /// Returns true if the data is stored in a C contiguous (aka row major) way.
    /// Note that this does not implies that the start offset is 0 or that there are no extra
    /// elements at the end of the storage.
    pub fn is_contiguous(&self) -> bool {
        self.shape.is_contiguous(&self.stride)
    }

    /// Returns true if the data is stored in a Fortran contiguous (aka column major) way.
    pub fn is_fortran_contiguous(&self) -> bool {
        self.shape.is_fortran_contiguous(&self.stride)
    }

    pub fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
        let dims = self.shape().dims();
        if dim >= dims.len() {
            Err(Error::DimOutOfRange {
                shape: self.shape().clone(),
                dim: dim as i32,
                op: "narrow",
            }
            .bt())?
        }
        if start + len > dims[dim] {
            Err(Error::NarrowInvalidArgs {
                shape: self.shape.clone(),
                dim,
                start,
                len,
                msg: "start + len > dim_len",
            }
            .bt())?
        }
        let mut dims = dims.to_vec();
        dims[dim] = len;
        Ok(Self {
            shape: Shape::from(dims),
            stride: self.stride.clone(),
            start_offset: self.start_offset + self.stride[dim] * start,
        })
    }

    pub fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
        let rank = self.shape.rank();
        if rank <= dim1 || rank <= dim2 {
            Err(Error::UnexpectedNumberOfDims {
                expected: usize::max(dim1, dim2),
                got: rank,
                shape: self.shape().clone(),
            }
            .bt())?
        }
        let mut stride = self.stride().to_vec();
        let mut dims = self.shape().dims().to_vec();
        dims.swap(dim1, dim2);
        stride.swap(dim1, dim2);
        Ok(Self {
            shape: Shape::from(dims),
            stride,
            start_offset: self.start_offset,
        })
    }

    pub fn permute(&self, idxs: &[usize]) -> Result<Self> {
        let is_permutation =
            idxs.len() == self.shape.rank() && (0..idxs.len()).all(|i| idxs.contains(&i));
        if !is_permutation {
            crate::bail!(
                "dimension mismatch in permute, tensor {:?}, dims: {:?}",
                self.dims(),
                idxs
            )
        }
        let stride = self.stride();
        let dims = self.shape().dims();
        let mut perm_stride = stride.to_vec();
        let mut perm_dims = dims.to_vec();
        for (i, &idx) in idxs.iter().enumerate() {
            perm_stride[i] = stride[idx];
            perm_dims[i] = dims[idx];
        }
        Ok(Self {
            shape: Shape::from(perm_dims),
            stride: perm_stride,
            start_offset: self.start_offset,
        })
    }

    pub fn broadcast_as<S: Into<Shape>>(&self, shape: S) -> Result<Self> {
        let shape = shape.into();
        if shape.rank() < self.shape().rank() {
            return Err(Error::BroadcastIncompatibleShapes {
                src_shape: self.shape().clone(),
                dst_shape: shape,
            }
            .bt());
        }
        let added_dims = shape.rank() - self.shape().rank();
        let mut stride = vec![0; added_dims];
        for (&dst_dim, (&src_dim, &src_stride)) in shape.dims()[added_dims..]
            .iter()
            .zip(self.dims().iter().zip(self.stride()))
        {
            let s = if dst_dim == src_dim {
                src_stride
            } else if src_dim != 1 {
                return Err(Error::BroadcastIncompatibleShapes {
                    src_shape: self.shape().clone(),
                    dst_shape: shape,
                }
                .bt());
            } else {
                0
            };
            stride.push(s)
        }
        Ok(Self {
            shape,
            stride,
            start_offset: self.start_offset,
        })
    }

    pub(crate) fn strided_index(&self) -> crate::StridedIndex {
        crate::StridedIndex::from_layout(self)
    }

    pub(crate) fn strided_blocks(&self) -> crate::StridedBlocks {
        let mut block_len = 1;
        let mut contiguous_dims = 0; // These are counted from the right.
        for (&stride, &dim) in self.stride().iter().zip(self.dims().iter()).rev() {
            if stride != block_len {
                break;
            }
            block_len *= dim;
            contiguous_dims += 1;
        }
        let index_dims = self.dims().len() - contiguous_dims;
        if index_dims == 0 {
            crate::StridedBlocks::SingleBlock {
                start_offset: self.start_offset,
                len: block_len,
            }
        } else {
            let block_start_index = crate::StridedIndex::new(
                &self.dims()[..index_dims],
                &self.stride[..index_dims],
                self.start_offset,
            );
            crate::StridedBlocks::MultipleBlocks {
                block_start_index,
                block_len,
            }
        }
    }

    // Returns the contiguous offsets with broadcast if applicable.
    pub(crate) fn offsets_b(&self) -> Option<ContiguousOffsetsWithBroadcast> {
        let mut left_broadcast = 1;
        let mut right_broadcast = 1;
        let strides = self.stride();
        let dims = self.dims();
        let mut start_cont = 0;
        let mut end_cont = dims.len();
        for (&s, &d) in strides.iter().zip(dims.iter()) {
            if s != 0 {
                break;
            }
            start_cont += 1;
            left_broadcast *= d;
        }
        if start_cont == dims.len() {
            return Some(ContiguousOffsetsWithBroadcast {
                start: self.start_offset,
                len: 1,
                left_broadcast,
                right_broadcast: 1,
            });
        }
        for (&s, &d) in strides.iter().zip(dims.iter()).rev() {
            if s != 0 {
                break;
            }
            end_cont -= 1;
            right_broadcast *= d;
        }
        // Check that the inner dims are contiguous
        let strides = &strides[start_cont..end_cont];
        let dims = &dims[start_cont..end_cont];
        let mut len = 1;
        for (&stride, &dim) in strides.iter().zip(dims.iter()).rev() {
            if stride != len {
                return None;
            }
            len *= dim;
        }
        Some(ContiguousOffsetsWithBroadcast {
            start: self.start_offset,
            len,
            left_broadcast,
            right_broadcast,
        })
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ContiguousOffsetsWithBroadcast {
    pub start: usize,
    pub len: usize,
    pub left_broadcast: usize,
    pub right_broadcast: usize,
}