1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
use crate::{shape::Dim, Error, Result, Shape, Tensor};

impl Tensor {
    /// Concatenates two or more tensors along a particular dimension.
    ///
    /// All tensors must of the same rank, and the output will have
    /// the same rank
    ///
    /// ```rust
    /// # use candle_core::{Tensor, DType, Device};
    /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
    /// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
    ///
    /// let c = Tensor::cat(&[&a, &b], 0)?;
    /// assert_eq!(c.shape().dims(), &[4, 3]);
    ///
    /// let c = Tensor::cat(&[&a, &b], 1)?;
    /// assert_eq!(c.shape().dims(), &[2, 6]);
    /// # Ok::<(), candle_core::Error>(())
    /// ```
    pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
        if args.is_empty() {
            Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
        }
        let arg0 = args[0].as_ref();
        if args.len() == 1 {
            return Ok(arg0.clone());
        }
        let dim = dim.to_index(arg0.shape(), "cat")?;
        for arg in args {
            arg.as_ref().check_dim(dim, "cat")?;
        }
        for (arg_idx, arg) in args.iter().enumerate() {
            let arg = arg.as_ref();
            if arg0.rank() != arg.rank() {
                Err(Error::UnexpectedNumberOfDims {
                    expected: arg0.rank(),
                    got: arg.rank(),
                    shape: arg.shape().clone(),
                }
                .bt())?
            }
            for (dim_idx, (v1, v2)) in arg0
                .shape()
                .dims()
                .iter()
                .zip(arg.shape().dims().iter())
                .enumerate()
            {
                if dim_idx != dim && v1 != v2 {
                    Err(Error::ShapeMismatchCat {
                        dim: dim_idx,
                        first_shape: arg0.shape().clone(),
                        n: arg_idx + 1,
                        nth_shape: arg.shape().clone(),
                    }
                    .bt())?
                }
            }
        }
        let all_contiguous = args.iter().all(|v| v.as_ref().is_contiguous());
        if all_contiguous {
            Self::cat_contiguous(args, dim)
        } else if dim == 0 {
            Self::cat0(args)
        } else {
            let args: Vec<Tensor> = args
                .iter()
                .map(|a| a.as_ref().transpose(0, dim))
                .collect::<Result<Vec<_>>>()?;
            let cat = Self::cat0(&args)?;
            cat.transpose(0, dim)
        }
    }

    fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
        if args.is_empty() {
            Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
        }
        let arg0 = args[0].as_ref();
        if args.len() == 1 {
            return Ok(arg0.clone());
        }
        let rank = arg0.rank();
        let device = arg0.device();
        let dtype = arg0.dtype();
        let first_dims = arg0.shape().dims();
        let mut cat_dims = first_dims.to_vec();
        cat_dims[0] = 0;
        let mut offsets = vec![0usize];
        for (arg_idx, arg) in args.iter().enumerate() {
            let arg = arg.as_ref();
            if arg.dtype() != dtype {
                Err(Error::DTypeMismatchBinaryOp {
                    lhs: dtype,
                    rhs: arg.dtype(),
                    op: "cat",
                }
                .bt())?
            }
            if arg.device().location() != device.location() {
                Err(Error::DeviceMismatchBinaryOp {
                    lhs: device.location(),
                    rhs: arg.device().location(),
                    op: "cat",
                }
                .bt())?
            }
            if rank != arg.rank() {
                Err(Error::UnexpectedNumberOfDims {
                    expected: rank,
                    got: arg.rank(),
                    shape: arg.shape().clone(),
                }
                .bt())?
            }
            for (dim_idx, (v1, v2)) in arg0
                .shape()
                .dims()
                .iter()
                .zip(arg.shape().dims().iter())
                .enumerate()
            {
                if dim_idx == 0 {
                    cat_dims[0] += v2;
                }
                if dim_idx != 0 && v1 != v2 {
                    Err(Error::ShapeMismatchCat {
                        dim: dim_idx,
                        first_shape: arg0.shape().clone(),
                        n: arg_idx + 1,
                        nth_shape: arg.shape().clone(),
                    }
                    .bt())?
                }
            }
            let next_offset = offsets.last().unwrap() + arg.elem_count();
            offsets.push(next_offset);
        }
        let shape = Shape::from(cat_dims);
        let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, 0));
        let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
        for (arg, &offset) in args.iter().zip(offsets.iter()) {
            let arg = arg.as_ref();
            arg.storage()
                .copy_strided_src(&mut storage, offset, arg.layout())?;
        }
        Ok(crate::tensor::from_storage(storage, shape, op, false))
    }

    fn cat_contiguous<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
        if args.is_empty() {
            Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
        }
        let arg0 = args[0].as_ref();
        if args.len() == 1 {
            return Ok(arg0.clone());
        }
        let rank = arg0.rank();
        let device = arg0.device();
        let dtype = arg0.dtype();
        let first_dims = arg0.shape().dims();
        let mut cat_dims = first_dims.to_vec();
        cat_dims[dim] = 0;
        for (arg_idx, arg) in args.iter().enumerate() {
            let arg = arg.as_ref();
            if arg.dtype() != dtype {
                Err(Error::DTypeMismatchBinaryOp {
                    lhs: dtype,
                    rhs: arg.dtype(),
                    op: "cat",
                }
                .bt())?
            }
            if arg.device().location() != device.location() {
                Err(Error::DeviceMismatchBinaryOp {
                    lhs: device.location(),
                    rhs: arg.device().location(),
                    op: "cat",
                }
                .bt())?
            }
            if rank != arg.rank() {
                Err(Error::UnexpectedNumberOfDims {
                    expected: rank,
                    got: arg.rank(),
                    shape: arg.shape().clone(),
                }
                .bt())?
            }
            for (dim_idx, (v1, v2)) in arg0
                .shape()
                .dims()
                .iter()
                .zip(arg.shape().dims().iter())
                .enumerate()
            {
                if dim_idx == dim {
                    cat_dims[dim] += v2;
                }
                if dim_idx != dim && v1 != v2 {
                    Err(Error::ShapeMismatchCat {
                        dim: dim_idx,
                        first_shape: arg0.shape().clone(),
                        n: arg_idx + 1,
                        nth_shape: arg.shape().clone(),
                    }
                    .bt())?
                }
            }
        }
        let cat_target_dim_len = cat_dims[dim];
        let block_size: usize = cat_dims.iter().skip(1 + dim).product();
        let shape = Shape::from(cat_dims);
        let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, dim));
        let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
        let mut dst_o = 0;
        for arg in args.iter() {
            let arg = arg.as_ref();
            let arg_dims = arg.shape().dims();
            let d1: usize = arg_dims.iter().take(dim).product();
            let d2 = block_size * arg_dims[dim];
            let dst_s = block_size * cat_target_dim_len;
            let src_o = arg.layout().start_offset();
            arg.storage().copy2d(
                &mut storage,
                d1,
                d2,
                /* src_s */ d2,
                dst_s,
                src_o,
                dst_o,
            )?;
            dst_o += d2;
        }
        Ok(crate::tensor::from_storage(storage, shape, op, false))
    }
}