1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
use candle::{CpuStorage, DType, Layout, Result, Shape, Tensor};
use rayon::prelude::*;

/// Applies the softmax function to the input tensor, rescaling the element so that elements on
/// a slice of fixed index on dimension `dim` are between 0 and 1 and sum to 1.
///
/// ```rust
/// use candle::{Tensor, Device, test_utils::to_vec2_round};
/// let a = Tensor::new(&[[0f32, 1., 0., 1.], [-2., 2., 3., -3.]], &Device::Cpu)?;
/// let a = candle_nn::ops::softmax(&a, 1)?;
/// assert_eq!(
///     to_vec2_round(&a, 4)?,
///     &[
///         [0.1345, 0.3655, 0.1345, 0.3655],
///         [0.0049, 0.2671, 0.7262, 0.0018]
///     ]);
/// # Ok::<(), candle::Error>(())
/// ```
pub fn softmax<D: candle::shape::Dim>(xs: &Tensor, dim: D) -> Result<Tensor> {
    let dim = dim.to_index(xs.shape(), "softmax")?;
    let max = xs.max_keepdim(dim)?;
    let diff = xs.broadcast_sub(&max)?;
    let num = diff.exp()?;
    let den = num.sum_keepdim(dim)?;
    num.broadcast_div(&den)
}

pub fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> Result<Tensor> {
    let d = d.to_index(xs.shape(), "log-softmax")?;
    let max = xs.max_keepdim(d)?;
    let diff = xs.broadcast_sub(&max)?;
    let sum_exp = diff.exp()?.sum_keepdim(d)?;
    let log_sm = diff.broadcast_sub(&sum_exp.log()?)?;
    Ok(log_sm)
}

pub fn silu(xs: &Tensor) -> Result<Tensor> {
    xs.silu()
}

pub fn swiglu(xs: &Tensor) -> Result<Tensor> {
    let xs = xs.chunk(2, candle::D::Minus1)?;
    &xs[0].silu()? * &xs[1]
}

struct Sigmoid;

impl candle::CustomOp1 for Sigmoid {
    fn name(&self) -> &'static str {
        "sigmoid"
    }

    fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
        use candle::backend::BackendStorage;

        fn fwd<T: num_traits::Float>(v: T) -> T {
            (v.neg().exp() + T::one()).recip()
        }

        // FIXME: using `candle::map_dtype` causes compilation errors.
        let storage = match storage {
            CpuStorage::BF16(slice) => {
                CpuStorage::BF16(candle::cpu_backend::unary_map(slice, layout, fwd))
            }
            CpuStorage::F16(slice) => {
                CpuStorage::F16(candle::cpu_backend::unary_map(slice, layout, fwd))
            }
            CpuStorage::F32(slice) => {
                CpuStorage::F32(candle::cpu_backend::unary_map(slice, layout, fwd))
            }
            CpuStorage::F64(slice) => {
                CpuStorage::F64(candle::cpu_backend::unary_map(slice, layout, fwd))
            }
            _ => Err(candle::Error::UnsupportedDTypeForOp(
                storage.dtype(),
                self.name(),
            ))?,
        };
        Ok((storage, layout.shape().clone()))
    }

    #[cfg(feature = "cuda")]
    fn cuda_fwd(
        &self,
        storage: &candle::CudaStorage,
        layout: &Layout,
    ) -> Result<(candle::CudaStorage, Shape)> {
        use candle::backend::BackendStorage;
        use candle::cuda_backend::cudarc::driver::{
            CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, ValidAsZeroBits,
        };
        use candle::cuda_backend::SlicePtrOrNull;
        use candle::cuda_backend::{kernel_name, kernels, Map1, WrapErr};
        use candle::{CudaDevice, WithDType};

        struct S;
        impl Map1 for S {
            fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
                &self,
                src: &CudaSlice<T>,
                dev: &CudaDevice,
                layout: &Layout,
            ) -> Result<CudaSlice<T>> {
                let shape = layout.shape();
                let dims = shape.dims();
                let el_count = shape.elem_count();
                let cfg = LaunchConfig::for_num_elems(el_count as u32);
                let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
                let src = &src.slice(layout.start_offset()..);
                let func = dev.get_or_load_func(&kernel_name::<T>("usigmoid"), kernels::UNARY)?;
                // SAFETY: Set later by running the kernel.
                let out = unsafe { dev.alloc::<T>(el_count) }.w()?;

                let params = (el_count, dims.len(), &ds, src, &out);
                // SAFETY: ffi.
                unsafe { func.launch(cfg, params) }.w()?;
                Ok(out)
            }
        }

        let dev = storage.device();
        let slice = S.map(&storage.slice, dev, layout)?;
        let dst = candle::CudaStorage {
            slice,
            device: dev.clone(),
        };
        Ok((dst, layout.shape().clone()))
    }

    #[cfg(feature = "metal")]
    fn metal_fwd(
        &self,
        storage: &candle::MetalStorage,
        layout: &Layout,
    ) -> Result<(candle::MetalStorage, Shape)> {
        use candle::backend::BackendStorage;
        use candle::MetalError;
        let device = storage.device();
        let dtype = storage.dtype();
        let shape = layout.shape();
        let el_count = shape.elem_count();
        let buffer = device.new_buffer(el_count, dtype, "sigmoid")?;
        let command_buffer = device.command_buffer()?;
        command_buffer.set_label("sigmoid");
        let src = candle_metal_kernels::BufferOffset {
            buffer: storage.buffer(),
            offset_in_bytes: layout.start_offset() * storage.dtype().size_in_bytes(),
        };

        match (el_count % 2, dtype, layout.is_contiguous()) {
            (0, DType::BF16 | DType::F16, true) => {
                use candle_metal_kernels::unary::contiguous_tiled;
                let kernel_name = match dtype {
                    DType::F16 => contiguous_tiled::sigmoid::HALF,
                    DType::F32 => contiguous_tiled::sigmoid::FLOAT,
                    DType::BF16 => contiguous_tiled::sigmoid::BFLOAT,
                    dtype => {
                        candle::bail!(
                            "Metal contiguous_tiled unary sigmoid {dtype:?} not implemented"
                        )
                    }
                };
                candle_metal_kernels::call_unary_contiguous_tiled(
                    device.metal_device(),
                    &command_buffer,
                    device.kernels(),
                    kernel_name,
                    el_count,
                    src,
                    &buffer,
                )
                .map_err(MetalError::from)?;
            }
            (_, _, true) => {
                use candle_metal_kernels::unary::contiguous;
                let kernel_name = match dtype {
                    DType::F16 => contiguous::sigmoid::HALF,
                    DType::F32 => contiguous::sigmoid::FLOAT,
                    DType::BF16 => contiguous::sigmoid::BFLOAT,
                    dtype => {
                        candle::bail!("Metal contiguous unary sigmoid {dtype:?} not implemented")
                    }
                };
                candle_metal_kernels::call_unary_contiguous(
                    device.metal_device(),
                    &command_buffer,
                    device.kernels(),
                    kernel_name,
                    el_count,
                    src,
                    &buffer,
                )
                .map_err(MetalError::from)?;
            }
            (_, _, false) => {
                use candle_metal_kernels::unary::strided;
                let kernel_name = match dtype {
                    DType::F16 => strided::sigmoid::HALF,
                    DType::F32 => strided::sigmoid::FLOAT,
                    DType::BF16 => strided::sigmoid::BFLOAT,
                    dtype => {
                        candle::bail!("Metal strided unary sigmoid {dtype:?} not implemented")
                    }
                };
                let dst = candle_metal_kernels::BufferOffset::zero_offset(&buffer);
                candle_metal_kernels::call_unary_strided(
                    device.metal_device(),
                    &command_buffer,
                    device.kernels(),
                    kernel_name,
                    layout.dims(),
                    src,
                    layout.stride(),
                    dst,
                )
                .map_err(MetalError::from)?;
            }
        }

        let new_storage = candle::MetalStorage::new(buffer, device.clone(), el_count, dtype);
        Ok((new_storage, layout.shape().clone()))
    }

    fn bwd(&self, _arg: &Tensor, res: &Tensor, grad_res: &Tensor) -> Result<Option<Tensor>> {
        // d/dx sigmoid(x) = (1 - sigmoid(x)) * sigmoid(x)
        let d_dx_sigmoid = res.ones_like()?.sub(res)?.mul(res)?;
        Ok(Some(grad_res.mul(&d_dx_sigmoid)?))
    }
}

pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
    xs.apply_op1(Sigmoid)
}

pub fn hard_sigmoid(xs: &Tensor) -> Result<Tensor> {
    // TODO: Should we have a specialized op for this?
    ((xs + 3.0)? / 6.0)?.clamp(0f32, 1f32)
}

pub fn leaky_relu(xs: &Tensor, negative_slope: f64) -> Result<Tensor> {
    let zeros = xs.zeros_like()?;
    xs.maximum(&zeros)? + xs.minimum(&zeros)? * negative_slope
}

pub fn dropout(xs: &Tensor, drop_p: f32) -> Result<Tensor> {
    // This implementation is inefficient as it stores the full mask for the backward pass.
    // Instead we could just store the seed and have a specialized kernel that would both
    // generate the random mask and apply it.
    // Another easier optimization would be to be able to generate boolean mask using just a bit of
    // entropy per element rather than generating a full float per element.
    if !(0. ..1.).contains(&drop_p) {
        candle::bail!("dropout probability has to be in [0, 1), got {drop_p}")
    }
    let rand = Tensor::rand(0f32, 1f32, xs.shape(), xs.device())?;
    let scale = 1.0 / (1.0 - drop_p as f64);
    let drop_p = Tensor::new(drop_p, xs.device())?.broadcast_as(xs.shape())?;
    let mask = (rand.ge(&drop_p)?.to_dtype(xs.dtype())? * scale)?;
    xs * mask
}

#[derive(Clone, Debug)]
pub struct Dropout {
    drop_p: f32,
}

impl Dropout {
    pub fn new(drop_p: f32) -> Dropout {
        Self { drop_p }
    }

    pub fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
        if train {
            dropout(xs, self.drop_p)
        } else {
            Ok(xs.clone())
        }
    }
}

impl candle::ModuleT for Dropout {
    fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
        self.forward(xs, train)
    }
}

struct SoftmaxLastDim;

impl candle::CustomOp1 for SoftmaxLastDim {
    fn name(&self) -> &'static str {
        "softmax-last-dim"
    }

    fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
        fn softmax<T: candle::WithDType + num_traits::Float>(
            src: &[T],
            layout: &Layout,
        ) -> Result<(CpuStorage, Shape)> {
            let src = match layout.contiguous_offsets() {
                None => candle::bail!("input has to be contiguous"),
                Some((o1, o2)) => &src[o1..o2],
            };
            let el_count = layout.shape().elem_count();
            let dims = layout.shape().dims();
            let dim_m1 = dims[dims.len() - 1];
            let mut dst = vec![T::zero(); el_count];
            src.par_chunks(dim_m1)
                .zip(dst.par_chunks_mut(dim_m1))
                .for_each(|(src, dst)| {
                    let mut max = T::neg_infinity();
                    unsafe { T::vec_reduce_max(src.as_ptr(), &mut max, dim_m1) };
                    for (s, d) in src.iter().zip(dst.iter_mut()) {
                        *d = (*s - max).exp();
                    }
                    let mut sum_exp = T::zero();
                    unsafe { T::vec_reduce_sum(dst.as_ptr(), &mut sum_exp, dim_m1) };
                    for d in dst.iter_mut() {
                        *d /= sum_exp
                    }
                });
            let storage = candle::WithDType::to_cpu_storage_owned(dst);
            Ok((storage, Shape::from_dims(dims)))
        }

        match storage {
            CpuStorage::BF16(slice) => softmax::<half::bf16>(slice, layout),
            CpuStorage::F16(slice) => softmax::<half::f16>(slice, layout),
            CpuStorage::F32(slice) => softmax::<f32>(slice, layout),
            CpuStorage::F64(slice) => softmax::<f64>(slice, layout),
            _ => candle::bail!("unsupported dtype for softmax {:?}", storage),
        }
    }

    #[cfg(feature = "cuda")]
    fn cuda_fwd(
        &self,
        storage: &candle::CudaStorage,
        layout: &Layout,
    ) -> Result<(candle::CudaStorage, Shape)> {
        use candle::cuda_backend::cudarc::driver::{
            CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig,
        };
        use candle::cuda_backend::{kernel_name, kernels, Map1, WrapErr};
        use candle::{CudaDevice, WithDType};

        struct S;
        impl Map1 for S {
            fn f<T: DeviceRepr + WithDType>(
                &self,
                src: &CudaSlice<T>,
                dev: &CudaDevice,
                layout: &Layout,
            ) -> Result<CudaSlice<T>> {
                let src = match layout.contiguous_offsets() {
                    None => candle::bail!("input has to be contiguous"),
                    Some((o1, o2)) => src.slice(o1..o2),
                };
                let el = layout.shape().elem_count();
                let dims = layout.shape().dims();
                let dim_m1 = dims[dims.len() - 1];
                let (n_rows, n_cols) = (el / dim_m1, dim_m1);

                let cfg = LaunchConfig {
                    grid_dim: (n_rows as u32, 1, 1),
                    block_dim: (1, 32, 1),
                    shared_mem_bytes: 0,
                };
                let func = dev.get_or_load_func(&kernel_name::<T>("softmax"), kernels::REDUCE)?;
                // SAFETY: Set later by running the kernel.
                let dst = unsafe { dev.alloc::<T>(el) }.w()?;
                let params = (&src, &dst, n_cols as i32);
                // SAFETY: ffi.
                unsafe { func.launch(cfg, params) }.w()?;
                Ok(dst)
            }
        }

        use candle::backend::BackendStorage;
        let dev = storage.device();
        let slice = S.map(&storage.slice, dev, layout)?;
        let dst = candle::cuda_backend::CudaStorage {
            slice,
            device: dev.clone(),
        };
        Ok((dst, layout.shape().clone()))
    }

    #[cfg(feature = "metal")]
    fn metal_fwd(
        &self,
        storage: &candle::MetalStorage,
        layout: &Layout,
    ) -> Result<(candle::MetalStorage, Shape)> {
        use candle::backend::BackendStorage;
        let device = storage.device();
        let command_buffer = device.command_buffer()?;
        let kernels = device.kernels();
        let name = match storage.dtype() {
            DType::F32 => "softmax_f32",
            DType::F16 => "softmax_f16",
            DType::BF16 => "softmax_bf16",
            dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
        };

        let n = layout.stride().len();
        if !(layout.is_contiguous() && layout.stride()[n - 1] == 1) {
            candle::bail!("Non contiguous softmax-last-dim is not implemented");
        }

        let last_dim = layout.dims()[layout.shape().rank() - 1];
        let elem_count = layout.shape().elem_count();
        let output = device.new_buffer(elem_count, storage.dtype(), "softmax")?;
        candle_metal_kernels::call_last_softmax(
            device.metal_device(),
            &command_buffer,
            kernels,
            name,
            elem_count,
            last_dim,
            storage.buffer(),
            layout.start_offset() * storage.dtype().size_in_bytes(),
            &output,
        )
        .map_err(candle::Error::wrap)?;
        let newstorage =
            candle::MetalStorage::new(output, device.clone(), elem_count, storage.dtype());
        Ok((newstorage, layout.shape().clone()))
    }
}

pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> {
    xs.apply_op1_no_bwd(&SoftmaxLastDim)
}

#[derive(Debug, Clone)]
struct RmsNorm {
    eps: f32,
}

impl candle::CustomOp2 for RmsNorm {
    fn name(&self) -> &'static str {
        "rms-norm"
    }

    fn cpu_fwd(
        &self,
        s1: &CpuStorage,
        l1: &Layout,
        s2: &CpuStorage,
        l2: &Layout,
    ) -> Result<(CpuStorage, Shape)> {
        use candle::backend::BackendStorage;

        let eps = self.eps;
        fn inner<
            T: candle::WithDType
                + num_traits::Float
                + num_traits::AsPrimitive<f32>
                + num_traits::FromPrimitive,
        >(
            src: &[T],
            layout: &Layout,
            alpha: &[T],
            alpha_layout: &Layout,
            eps: f32,
        ) -> Result<(CpuStorage, Shape)> {
            let src = match layout.contiguous_offsets() {
                None => candle::bail!("input has to be contiguous"),
                Some((o1, o2)) => &src[o1..o2],
            };
            let alpha = match alpha_layout.contiguous_offsets() {
                None => candle::bail!("alpha has to be contiguous"),
                Some((o1, o2)) => &alpha[o1..o2],
            };
            let el_count = layout.shape().elem_count();
            let dims = layout.shape().dims();
            let dim_m1 = dims[dims.len() - 1];
            let mut dst = vec![T::zero(); el_count];
            src.par_chunks(dim_m1)
                .zip(dst.par_chunks_mut(dim_m1))
                .for_each(|(src, dst)| {
                    let sum2 = src
                        .iter()
                        .map(|&v| {
                            let v = v.as_();
                            v * v
                        })
                        .sum::<f32>();
                    let m = (sum2 / dim_m1 as f32 + eps).sqrt();
                    let m = T::from_f32(m).unwrap_or_else(T::nan);
                    for ((d, s), alpha) in dst.iter_mut().zip(src.iter()).zip(alpha) {
                        *d = *s / m * *alpha
                    }
                });
            let storage = candle::WithDType::to_cpu_storage_owned(dst);
            Ok((storage, Shape::from_dims(dims)))
        }

        use CpuStorage as C;
        match (s1, s2) {
            (C::BF16(s1), C::BF16(s2)) => inner::<half::bf16>(s1, l1, s2, l2, eps),
            (C::F16(s1), C::F16(s2)) => inner::<half::f16>(s1, l1, s2, l2, eps),
            (C::F32(s1), C::F32(s2)) => inner::<f32>(s1, l1, s2, l2, eps),
            _ => candle::bail!("unsupported dtype for rmsnorm {:?}", s1.dtype()),
        }
    }

    #[cfg(feature = "cuda")]
    fn cuda_fwd(
        &self,
        s1: &candle::CudaStorage,
        l1: &Layout,
        s2: &candle::CudaStorage,
        l2: &Layout,
    ) -> Result<(candle::CudaStorage, Shape)> {
        use candle::cuda_backend::cudarc::driver::{
            CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig,
        };
        use candle::cuda_backend::{kernel_name, kernels, Map2, WrapErr};
        use candle::{CudaDevice, WithDType};

        struct S {
            eps: f32,
        }
        impl Map2 for S {
            fn f<T: DeviceRepr + WithDType>(
                &self,
                src: &CudaSlice<T>,
                layout: &Layout,
                alpha: &CudaSlice<T>,
                alpha_layout: &Layout,
                dev: &CudaDevice,
            ) -> Result<CudaSlice<T>> {
                let src = match layout.contiguous_offsets() {
                    None => candle::bail!("input has to be contiguous"),
                    Some((o1, o2)) => src.slice(o1..o2),
                };
                let alpha = match alpha_layout.contiguous_offsets() {
                    None => candle::bail!("alpha has to be contiguous"),
                    Some((o1, o2)) => alpha.slice(o1..o2),
                };
                let el = layout.shape().elem_count();
                let dims = layout.shape().dims();
                let dim_m1 = dims[dims.len() - 1];
                let (n_rows, n_cols) = (el / dim_m1, dim_m1);

                let cfg = LaunchConfig {
                    grid_dim: (n_rows as u32, 1, 1),
                    block_dim: (1024, 1, 1),
                    shared_mem_bytes: 0,
                };
                let func = dev.get_or_load_func(&kernel_name::<T>("rmsnorm"), kernels::REDUCE)?;
                // SAFETY: Set later by running the kernel.
                let dst = unsafe { dev.alloc::<T>(el) }.w()?;
                let params = (&src, &dst, &alpha, n_cols as i32, self.eps);
                // SAFETY: ffi.
                unsafe { func.launch(cfg, params) }.w()?;
                Ok(dst)
            }
        }

        use candle::backend::BackendStorage;
        let dev = s1.device();
        let slice = S { eps: self.eps }.map(&s1.slice, l1, &s2.slice, l2, dev)?;
        let dst = candle::cuda_backend::CudaStorage {
            slice,
            device: dev.clone(),
        };
        Ok((dst, l1.shape().clone()))
    }

    #[cfg(feature = "metal")]
    fn metal_fwd(
        &self,
        s1: &candle::MetalStorage,
        l1: &Layout,
        s2: &candle::MetalStorage,
        l2: &Layout,
    ) -> Result<(candle::MetalStorage, Shape)> {
        use candle::backend::BackendStorage;
        let device = s1.device();
        let command_buffer = device.command_buffer()?;
        let kernels = device.kernels();
        let name = match (s1.dtype(), s2.dtype()) {
            (DType::F32, DType::F32) => "rmsnorm_f32",
            (DType::F16, DType::F16) => "rmsnorm_f16",
            (DType::BF16, DType::BF16) => "rmsnorm_bf16",
            (dt1, dt2) => candle::bail!("rmsnorm is not implemented for {dt1:?} {dt2:?}"),
        };

        if !(l1.is_contiguous() && l2.is_contiguous()) {
            candle::bail!("Non contiguous rmsnorm is not implemented");
        }

        let last_dim = l1.dims()[l1.shape().rank() - 1];
        let elem_count = l1.shape().elem_count();
        let output = device.new_buffer(elem_count, s1.dtype(), "rmsnorm")?;
        candle_metal_kernels::call_rms_norm(
            device.metal_device(),
            &command_buffer,
            kernels,
            name,
            elem_count,
            last_dim,
            self.eps,
            s1.buffer(),
            l1.start_offset() * s1.dtype().size_in_bytes(),
            s2.buffer(),
            l2.start_offset() * s2.dtype().size_in_bytes(),
            &output,
        )
        .map_err(candle::Error::wrap)?;
        let newstorage = candle::MetalStorage::new(output, device.clone(), elem_count, s1.dtype());
        Ok((newstorage, l1.shape().clone()))
    }
}

pub fn rms_norm_slow(x: &Tensor, alpha: &Tensor, eps: f32) -> Result<Tensor> {
    let x_dtype = x.dtype();
    let internal_dtype = match x_dtype {
        DType::F16 | DType::BF16 => DType::F32,
        d => d,
    };
    let hidden_size = x.dim(candle::D::Minus1)?;
    let x = x.to_dtype(internal_dtype)?;
    let norm_x = (x.sqr()?.sum_keepdim(candle::D::Minus1)? / hidden_size as f64)?;
    let x_normed = x.broadcast_div(&(norm_x + eps as f64)?.sqrt()?)?;
    x_normed.to_dtype(x_dtype)?.broadcast_mul(alpha)
}

pub fn rms_norm(xs: &Tensor, alpha: &Tensor, eps: f32) -> Result<Tensor> {
    let hidden_size_xs = xs.dim(candle::D::Minus1)?;
    let hidden_size_alpha = alpha.dims1()?;
    if hidden_size_xs != hidden_size_alpha {
        candle::bail!(
            "shape mismatch in rms-norm {:?} {:?}",
            xs.shape(),
            alpha.shape()
        )
    }
    xs.apply_op2_no_bwd(alpha, &RmsNorm { eps })
}

// https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
pub fn pixel_shuffle(xs: &Tensor, upscale_factor: usize) -> Result<Tensor> {
    let (b_size, c, h, w) = xs.dims4()?;
    let out_c = c / upscale_factor / upscale_factor;
    xs.reshape((b_size, out_c, upscale_factor, upscale_factor, h, w))?
        .permute((0, 1, 4, 2, 5, 3))?
        .reshape((b_size, out_c, h * upscale_factor, w * upscale_factor))
}

pub fn pixel_unshuffle(xs: &Tensor, downscale_factor: usize) -> Result<Tensor> {
    let (b_size, c, h, w) = xs.dims4()?;
    let out_c = c * downscale_factor * downscale_factor;
    xs.reshape((
        b_size,
        c,
        h / downscale_factor,
        downscale_factor,
        w / downscale_factor,
        downscale_factor,
    ))?
    .permute((0, 1, 3, 5, 2, 4))?
    .reshape((b_size, out_c, h / downscale_factor, w / downscale_factor))
}

// https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html
pub fn replication_pad2d(xs: &Tensor, pad: usize) -> Result<Tensor> {
    match pad {
        0 => Ok(xs.clone()),
        1 => {
            let (_b_size, _c, h, w) = xs.dims4()?;
            let (first, last) = (xs.narrow(3, 0, 1)?, xs.narrow(3, w - 1, 1)?);
            let xs = Tensor::cat(&[&first, xs, &last], 3)?;
            let (first, last) = (xs.narrow(2, 0, 1)?, xs.narrow(2, h - 1, 1)?);
            Tensor::cat(&[&first, &xs, &last], 2)
        }
        n => candle::bail!("replication-pad with a size of {n} is not supported"),
    }
}