1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{embedding, linear_b as linear, Embedding, LayerNorm, Linear, Module, VarBuilder};

fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
    let weight = vb.get(size, "weight")?;
    let bias = vb.get(size, "bias")?;
    Ok(LayerNorm::new(weight, bias, eps))
}

fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
    let mask: Vec<_> = (0..t)
        .flat_map(|i| (0..t).map(move |j| u8::from(j <= i)))
        .collect();
    let mask = Tensor::from_slice(&mask, (t, t), device)?;
    Ok(mask)
}

#[derive(Debug)]
pub struct Config {
    pub vocab_size: usize,
    // max_position_embeddings aka n_positions
    pub max_position_embeddings: usize,
    // num_hidden_layers aka n_layer
    pub num_hidden_layers: usize,
    // hidden_size aka n_embd
    pub hidden_size: usize,
    pub layer_norm_epsilon: f64,
    pub n_inner: Option<usize>,
    // num_attention_heads aka n_head
    pub num_attention_heads: usize,
    pub multi_query: bool,
    pub use_cache: bool,
}

impl Config {
    #[allow(dead_code)]
    pub fn starcoder_1b() -> Self {
        Self {
            vocab_size: 49152,
            max_position_embeddings: 8192,
            num_hidden_layers: 24,
            hidden_size: 2048,
            layer_norm_epsilon: 1e-5,
            n_inner: Some(8192),
            num_attention_heads: 16,
            multi_query: true,
            use_cache: true,
        }
    }

    #[allow(dead_code)]
    pub fn starcoder_3b() -> Self {
        Self {
            vocab_size: 49152,
            max_position_embeddings: 8192,
            num_hidden_layers: 36,
            hidden_size: 2816,
            layer_norm_epsilon: 1e-5,
            n_inner: Some(11264),
            num_attention_heads: 22,
            multi_query: true,
            use_cache: true,
        }
    }

    #[allow(dead_code)]
    pub fn starcoder_7b() -> Self {
        Self {
            vocab_size: 49152,
            max_position_embeddings: 8192,
            num_hidden_layers: 42,
            hidden_size: 4096,
            layer_norm_epsilon: 1e-5,
            n_inner: Some(16384),
            num_attention_heads: 32,
            multi_query: true,
            use_cache: true,
        }
    }

    #[allow(dead_code)]
    pub fn starcoder() -> Self {
        Self {
            vocab_size: 49152,
            max_position_embeddings: 8192,
            num_hidden_layers: 40,
            hidden_size: 6144,
            layer_norm_epsilon: 1e-5,
            n_inner: Some(24576),
            num_attention_heads: 48,
            multi_query: true,
            use_cache: true,
        }
    }
}

struct Attention {
    c_attn: Linear,
    c_proj: Linear,
    kv_cache: Option<Tensor>,
    use_cache: bool,
    embed_dim: usize,
    kv_dim: usize,
    num_heads: usize,
    head_dim: usize,
    multi_query: bool,
}

impl Attention {
    pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let hidden_size = cfg.hidden_size;
        let head_dim = hidden_size / cfg.num_attention_heads;
        let kv_heads = if cfg.multi_query {
            1
        } else {
            cfg.num_attention_heads
        };
        let kv_dim = kv_heads * head_dim;
        let c_attn = linear(hidden_size, hidden_size + 2 * kv_dim, true, vb.pp("c_attn"))?;
        let c_proj = linear(hidden_size, hidden_size, true, vb.pp("c_proj"))?;
        Ok(Self {
            c_proj,
            c_attn,
            embed_dim: hidden_size,
            kv_cache: None,
            use_cache: cfg.use_cache,
            kv_dim,
            head_dim,
            num_heads: cfg.num_attention_heads,
            multi_query: cfg.multi_query,
        })
    }

    fn attn(
        &self,
        query: &Tensor,
        key: &Tensor,
        value: &Tensor,
        attention_mask: &Tensor,
    ) -> Result<Tensor> {
        if query.dtype() != DType::F32 {
            // If we start supporting f16 models, we may need the upcasting scaling bits.
            // https://github.com/huggingface/transformers/blob/a0042379269bea9182c1f87e6b2eee4ba4c8cce8/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L133
            candle::bail!("upcasting is not supported {:?}", query.dtype())
        }
        let scale_factor = 1f64 / (self.head_dim as f64).sqrt();
        let initial_query_shape = query.shape();
        let key_len = key.dim(D::Minus1)?;
        let (query, key, attn_shape, attn_view) = if self.multi_query {
            let (b_sz, query_len, _) = query.dims3()?;
            let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
            let attn_shape = (b_sz, query_len, self.num_heads, key_len);
            let attn_view = (b_sz, query_len * self.num_heads, key_len);
            (query, key.clone(), attn_shape, attn_view)
        } else {
            let (b_sz, _num_heads, query_len, _head_dim) = query.dims4()?;
            let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
            let key = key.reshape((b_sz * self.num_heads, self.head_dim, key_len))?;
            let attn_shape = (b_sz, self.num_heads, query_len, key_len);
            let attn_view = (b_sz * self.num_heads, query_len, key_len);
            (query, key, attn_shape, attn_view)
        };

        let attn_weights =
            (query.matmul(&key.contiguous()?)? * scale_factor)?.reshape(attn_shape)?;
        let attention_mask = attention_mask.broadcast_as(attn_shape)?;
        let mask_value =
            Tensor::new(f32::NEG_INFINITY, query.device())?.broadcast_as(attn_shape)?;
        let attn_weights = attention_mask.where_cond(&attn_weights, &mask_value)?;
        let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
        let value = value.contiguous()?;
        let attn_output = if self.multi_query {
            attn_weights
                .reshape(attn_view)?
                .matmul(&value)?
                .reshape(initial_query_shape)?
        } else {
            attn_weights.matmul(&value)?
        };
        Ok(attn_output)
    }

    fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
        let qkv = self.c_attn.forward(hidden_states)?;
        let (query, key_value) = if self.multi_query {
            let query = qkv.i((.., .., ..self.embed_dim))?;
            let key_value = qkv.i((.., .., self.embed_dim..self.embed_dim + 2 * self.kv_dim))?;
            (query, key_value)
        } else {
            let mut dims = qkv.dims().to_vec();
            dims.pop();
            dims.push(self.embed_dim);
            dims.push(self.head_dim * 3);
            let qkv = qkv.reshape(dims)?.transpose(1, 2)?;
            let query = qkv.i((.., .., .., ..self.head_dim))?;
            let key_value = qkv.i((.., .., .., self.head_dim..3 * self.head_dim))?;
            (query, key_value)
        };
        let mut key_value = key_value;
        if self.use_cache {
            if let Some(kv_cache) = &self.kv_cache {
                // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
                // arbitrarily large sizes.
                key_value = Tensor::cat(&[kv_cache, &key_value], D::Minus2)?.contiguous()?;
            }
            self.kv_cache = Some(key_value.clone())
        }

        let key = key_value.narrow(D::Minus1, 0, self.head_dim)?;
        let value = key_value.narrow(D::Minus1, self.head_dim, self.head_dim)?;
        let attn_output = self.attn(&query, &key.t()?, &value, attention_mask)?;
        let attn_output = if self.multi_query {
            attn_output
        } else {
            attn_output
                .transpose(1, 2)?
                .reshape(hidden_states.shape())?
        };
        let attn_output = self.c_proj.forward(&attn_output)?;
        Ok(attn_output)
    }
}

struct Mlp {
    c_fc: Linear,
    c_proj: Linear,
}

impl Mlp {
    fn load(inner_dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let c_fc = linear(cfg.hidden_size, inner_dim, true, vb.pp("c_fc"))?;
        let c_proj = linear(inner_dim, cfg.hidden_size, true, vb.pp("c_proj"))?;
        Ok(Self { c_fc, c_proj })
    }

    fn forward(&mut self, hidden_states: &Tensor) -> Result<Tensor> {
        let hidden_states = self.c_fc.forward(hidden_states)?.gelu()?;
        let hidden_states = self.c_proj.forward(&hidden_states)?;
        Ok(hidden_states)
    }
}

// TODO: Add cross-attention?
struct Block {
    ln_1: LayerNorm,
    attn: Attention,
    ln_2: LayerNorm,
    mlp: Mlp,
}

impl Block {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let hidden_size = cfg.hidden_size;
        let inner_dim = cfg.n_inner.unwrap_or(4 * hidden_size);
        let ln_1 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_1"))?;
        let attn = Attention::load(vb.pp("attn"), cfg)?;
        let ln_2 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_2"))?;
        let mlp = Mlp::load(inner_dim, vb.pp("mlp"), cfg)?;
        Ok(Self {
            ln_1,
            attn,
            ln_2,
            mlp,
        })
    }

    fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
        let residual = hidden_states;
        let hidden_states = self.ln_1.forward(hidden_states)?;
        let attn_outputs = self.attn.forward(&hidden_states, attention_mask)?;
        let hidden_states = (&attn_outputs + residual)?;
        let residual = &hidden_states;
        let hidden_states = self.ln_2.forward(&hidden_states)?;
        let hidden_states = self.mlp.forward(&hidden_states)?;
        let hidden_states = (&hidden_states + residual)?;
        Ok(hidden_states)
    }
}

pub struct GPTBigCode {
    wte: Embedding,
    wpe: Embedding,
    blocks: Vec<Block>,
    ln_f: LayerNorm,
    lm_head: Linear,
    bias: Tensor,
    config: Config,
}

impl GPTBigCode {
    pub fn config(&self) -> &Config {
        &self.config
    }

    pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
        let hidden_size = cfg.hidden_size;
        let vb_t = vb.pp("transformer");
        let wte = embedding(cfg.vocab_size, hidden_size, vb_t.pp("wte"))?;
        let wpe = embedding(cfg.max_position_embeddings, hidden_size, vb_t.pp("wpe"))?;
        let blocks = (0..cfg.num_hidden_layers)
            .map(|i| Block::load(vb_t.pp(&format!("h.{i}")), &cfg))
            .collect::<Result<Vec<_>>>()?;
        let ln_f = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb_t.pp("ln_f"))?;
        let lm_head = linear(hidden_size, cfg.vocab_size, false, vb_t.pp("wte"))?;
        let bias = make_causal_mask(cfg.max_position_embeddings, vb.device())?;
        Ok(Self {
            wte,
            wpe,
            blocks,
            lm_head,
            ln_f,
            bias,
            config: cfg,
        })
    }

    pub fn forward(&mut self, input_ids: &Tensor, past_len: usize) -> Result<Tensor> {
        let dev = input_ids.device();
        let (b_sz, seq_len) = input_ids.dims2()?;

        let key_len = past_len + seq_len;
        let attention_mask = self.bias.i((past_len..key_len, ..key_len))?.unsqueeze(0)?;
        // MQA models: (batch_size, query_length, n_heads, key_length)
        // MHA models: (batch_size, n_heads, query_length, key_length)
        let seq_len_dim = if self.config.multi_query { 2 } else { 1 };
        let attention_mask = attention_mask.unsqueeze(seq_len_dim)?;

        let position_ids = Tensor::arange(past_len as u32, (past_len + seq_len) as u32, dev)?;
        let position_ids = position_ids.unsqueeze(0)?.broadcast_as((b_sz, seq_len))?;
        let input_embeds = self.wte.forward(input_ids)?;
        let position_embeds = self.wpe.forward(&position_ids)?;

        let mut hidden_states = (&input_embeds + &position_embeds)?;
        for block in self.blocks.iter_mut() {
            hidden_states = block.forward(&hidden_states, &attention_mask)?;
        }
        let hidden_states = self.ln_f.forward(&hidden_states)?;
        let hidden_states = hidden_states
            .reshape((b_sz, seq_len, self.config.hidden_size))?
            .narrow(1, seq_len - 1, 1)?;
        let logits = self.lm_head.forward(&hidden_states)?.squeeze(1)?;
        Ok(logits)
    }
}