use crate::models::with_tracing::{linear_b as linear, Linear};
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
#[derive(Debug, Clone)]
pub struct Config {
pub num_layers: usize,
pub padded_vocab_size: usize,
pub hidden_size: usize,
pub ffn_hidden_size: usize,
pub kv_channels: usize,
pub num_attention_heads: usize,
pub seq_length: usize,
pub layernorm_epsilon: f64,
pub rmsnorm: bool,
pub apply_residual_connection_post_layernorm: bool,
pub post_layer_norm: bool,
pub add_bias_linear: bool,
pub add_qkv_bias: bool,
pub bias_dropout_fusion: bool,
pub multi_query_attention: bool,
pub multi_query_group_num: usize,
pub apply_query_key_layer_scaling: bool,
pub attention_softmax_in_fp32: bool,
pub fp32_residual_connection: bool,
}
impl Config {
pub fn glm3_6b() -> Self {
Self {
num_layers: 28,
padded_vocab_size: 65024,
hidden_size: 4096,
ffn_hidden_size: 13696,
kv_channels: 128,
num_attention_heads: 32,
seq_length: 8192,
layernorm_epsilon: 1e-5,
rmsnorm: true,
apply_residual_connection_post_layernorm: false,
post_layer_norm: true,
add_bias_linear: false,
add_qkv_bias: true,
bias_dropout_fusion: true,
multi_query_attention: true,
multi_query_group_num: 2,
apply_query_key_layer_scaling: true,
attention_softmax_in_fp32: true,
fp32_residual_connection: false,
}
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
cache: Tensor,
}
impl RotaryEmbedding {
fn new(cfg: &Config, dtype: DType, dev: &Device) -> Result<Self> {
let rotary_dim = cfg.kv_channels;
let n_elem = rotary_dim / 2;
let inv_freq: Vec<_> = (0..n_elem)
.step_by(2)
.map(|i| 1f32 / 10_000f64.powf(i as f64 / n_elem as f64) as f32)
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, cfg.seq_length as u32, dev)?
.to_dtype(dtype)?
.reshape((cfg.seq_length, 1))?;
let freqs = t.matmul(&inv_freq)?;
let cache = Tensor::stack(&[&freqs.cos()?, &freqs.sin()?], D::Minus1)?;
Ok(Self { cache })
}
fn apply(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (seqlen, _b, np, _hn) = xs.dims4()?;
let cache = self.cache.narrow(0, seqlen_offset, seqlen)?;
let rot_dim = cache.dim(D::Minus2)? * 2;
let (xs, xs_pass) = (
xs.narrow(D::Minus1, 0, rot_dim)?,
xs.narrow(D::Minus1, rot_dim, rot_dim)?,
);
let xshaped = xs.reshape((seqlen, (), np, rot_dim / 2, 2))?;
let cache = cache.reshape((seqlen, (), 1, rot_dim / 2, 2))?;
let (xshaped0, xshaped1) = (
xshaped.i((.., .., .., .., 0))?,
xshaped.i((.., .., .., .., 1))?,
);
let (cache0, cache1) = (cache.i((.., .., .., .., 0))?, cache.i((.., .., .., .., 1))?);
let xs_out = Tensor::stack(
&[
(xshaped0.broadcast_mul(&cache0)? - xshaped1.broadcast_mul(&cache1)?)?,
(xshaped1.broadcast_mul(&cache0)? + xshaped0.broadcast_mul(&cache1)?)?,
],
D::Minus1,
)?;
let xs_out = xs_out.flatten_from(3)?;
Tensor::cat(&[xs_out, xs_pass], D::Minus1)
}
}
#[derive(Debug, Clone)]
struct CoreAttention {
coeff: Option<f64>,
norm_factor: f64,
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
impl CoreAttention {
fn new(layer_number: usize, cfg: &Config) -> Result<Self> {
let norm_factor = (cfg.kv_channels as f64).sqrt();
let (norm_factor, coeff) = if cfg.apply_query_key_layer_scaling {
let coeff = f64::max(1.0, layer_number as f64);
(norm_factor * coeff, Some(coeff))
} else {
(norm_factor, None)
};
Ok(Self { coeff, norm_factor })
}
fn forward(
&self,
query_layer: &Tensor,
key_layer: &Tensor,
value_layer: &Tensor,
attention_mask: &Option<Tensor>,
) -> Result<Tensor> {
let output_size = (
query_layer.dim(1)?, query_layer.dim(2)?, query_layer.dim(0)?, key_layer.dim(0)?, );
let query_layer =
query_layer.reshape((output_size.2, output_size.0 * output_size.1, ()))?;
let key_layer = key_layer.reshape((output_size.3, output_size.0 * output_size.1, ()))?;
let matmul_result = Tensor::matmul(
&query_layer.transpose(0, 1)?,
&key_layer.transpose(0, 1)?.transpose(1, 2)?,
)?;
let matmul_result = (matmul_result / self.norm_factor)?.reshape(output_size)?;
let matmul_result = match self.coeff {
None => matmul_result,
Some(coeff) => (matmul_result * coeff)?,
};
let attention_scores = match attention_mask {
Some(mask) => masked_fill(
&matmul_result,
&mask.broadcast_left((matmul_result.dim(0)?, matmul_result.dim(1)?))?,
f32::NEG_INFINITY,
)?,
None => matmul_result,
};
let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?;
let output_size = (
value_layer.dim(1)?,
value_layer.dim(2)?,
query_layer.dim(0)?,
value_layer.dim(3)?,
);
let value_layer =
value_layer.reshape((value_layer.dim(0)?, output_size.0 * output_size.1, ()))?;
let attention_probs =
attention_probs.reshape((output_size.0 * output_size.1, output_size.2, ()))?;
let context_layer = Tensor::matmul(&attention_probs, &value_layer.transpose(0, 1)?)?;
let context_layer = context_layer.reshape(output_size)?;
let context_layer = context_layer.permute((2, 0, 1, 3))?.contiguous()?;
context_layer.flatten_from(D::Minus2)
}
}
#[derive(Debug, Clone)]
struct SelfAttention {
query_key_value: Linear,
core_attention: CoreAttention,
dense: Linear,
multi_query_attention: bool,
num_attention_heads_per_partition: usize,
num_multi_query_groups_per_partition: usize,
hidden_size_per_attention_head: usize,
kv_cache: Option<(Tensor, Tensor)>,
}
impl SelfAttention {
fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let projection_size = cfg.kv_channels * cfg.num_attention_heads;
let hidden_size_per_attention_head = projection_size / cfg.num_attention_heads;
let qkv_hidden_size = if cfg.multi_query_attention {
projection_size + 2 * hidden_size_per_attention_head * cfg.multi_query_group_num
} else {
3 * projection_size
};
let query_key_value = linear(
cfg.hidden_size,
qkv_hidden_size,
cfg.add_bias_linear || cfg.add_qkv_bias,
vb.pp("query_key_value"),
)?;
let core_attention = CoreAttention::new(layer_number, cfg)?;
let dense = linear(
cfg.hidden_size,
cfg.hidden_size,
cfg.add_bias_linear,
vb.pp("dense"),
)?;
Ok(Self {
query_key_value,
core_attention,
dense,
multi_query_attention: cfg.multi_query_attention,
num_attention_heads_per_partition: cfg.num_attention_heads,
num_multi_query_groups_per_partition: cfg.multi_query_group_num,
hidden_size_per_attention_head: cfg.kv_channels,
kv_cache: None,
})
}
fn reset_kv_cache(&mut self) {
self.kv_cache = None
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: &Option<Tensor>,
rotary_emb: &RotaryEmbedding,
) -> Result<Tensor> {
let mixed_x_layer = xs.apply(&self.query_key_value)?;
if !self.multi_query_attention {
candle::bail!("only multi_query_attention=true is supported")
}
let hpa = self.hidden_size_per_attention_head;
let query_layer =
mixed_x_layer.narrow(D::Minus1, 0, self.num_attention_heads_per_partition * hpa)?;
let key_layer = mixed_x_layer.narrow(
D::Minus1,
self.num_attention_heads_per_partition * hpa,
self.num_multi_query_groups_per_partition * hpa,
)?;
let value_layer = mixed_x_layer.narrow(
D::Minus1,
self.num_attention_heads_per_partition * hpa
+ self.num_multi_query_groups_per_partition * hpa,
self.num_multi_query_groups_per_partition * hpa,
)?;
let query_layer = query_layer.reshape((
query_layer.dim(0)?,
query_layer.dim(1)?,
self.num_attention_heads_per_partition,
hpa,
))?;
let key_layer = key_layer.reshape((
key_layer.dim(0)?,
key_layer.dim(1)?,
self.num_multi_query_groups_per_partition,
hpa,
))?;
let value_layer = value_layer.reshape((
value_layer.dim(0)?,
value_layer.dim(1)?,
self.num_multi_query_groups_per_partition,
hpa,
))?;
let seqlen_offset = match &self.kv_cache {
None => 0,
Some((prev_k, _)) => prev_k.dim(0)?,
};
let query_layer = rotary_emb.apply(&query_layer, seqlen_offset)?;
let key_layer = rotary_emb.apply(&key_layer, seqlen_offset)?;
let (key_layer, value_layer) = match &self.kv_cache {
None => (key_layer, value_layer),
Some((prev_k, prev_v)) => {
let k = Tensor::cat(&[prev_k, &key_layer], 0)?;
let v = Tensor::cat(&[prev_v, &value_layer], 0)?;
(k, v)
}
};
self.kv_cache = Some((key_layer.clone(), value_layer.clone()));
let ratio =
self.num_attention_heads_per_partition / self.num_multi_query_groups_per_partition;
let key_layer = {
let (d0, d1, d2, d3) = key_layer.dims4()?;
key_layer
.unsqueeze(D::Minus2)?
.expand((d0, d1, d2, ratio, d3))?
.reshape((
d0,
d1,
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
))?
};
let value_layer = {
let (d0, d1, d2, d3) = value_layer.dims4()?;
value_layer
.unsqueeze(D::Minus2)?
.expand((d0, d1, d2, ratio, d3))?
.reshape((
d0,
d1,
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
))?
};
let context_layer =
self.core_attention
.forward(&query_layer, &key_layer, &value_layer, attention_mask)?;
let output = context_layer.apply(&self.dense)?;
Ok(output)
}
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone)]
struct MLP {
dense_h_to_4h: Linear,
dense_4h_to_h: Linear,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense_h_to_4h = linear(
cfg.hidden_size,
cfg.ffn_hidden_size * 2,
cfg.add_bias_linear,
vb.pp("dense_h_to_4h"),
)?;
let dense_4h_to_h = linear(
cfg.ffn_hidden_size,
cfg.hidden_size,
cfg.add_bias_linear,
vb.pp("dense_4h_to_h"),
)?;
Ok(Self {
dense_4h_to_h,
dense_h_to_4h,
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.dense_h_to_4h)?
.apply(&candle_nn::Activation::Swiglu)?
.apply(&self.dense_4h_to_h)
}
}
#[derive(Debug, Clone)]
struct Block {
input_layernorm: candle_nn::LayerNorm,
self_attention: SelfAttention,
post_attention_layernorm: candle_nn::LayerNorm,
mlp: MLP,
apply_residual_connection_post_layernorm: bool,
}
impl Block {
fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let input_layernorm = if cfg.rmsnorm {
candle_nn::rms_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("input_layernorm"),
)?
.into_inner()
} else {
candle_nn::layer_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("input_layernorm"),
)?
};
let post_attention_layernorm = if cfg.rmsnorm {
candle_nn::rms_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("post_attention_layernorm"),
)?
.into_inner()
} else {
candle_nn::layer_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("post_attention_layernorm"),
)?
};
let self_attention = SelfAttention::new(layer_number, cfg, vb.pp("self_attention"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
Ok(Self {
input_layernorm,
self_attention,
post_attention_layernorm,
mlp,
apply_residual_connection_post_layernorm: cfg.apply_residual_connection_post_layernorm,
})
}
fn reset_kv_cache(&mut self) {
self.self_attention.reset_kv_cache()
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: &Option<Tensor>,
rotary_emb: &RotaryEmbedding,
) -> Result<Tensor> {
let layernorm_output = xs.apply(&self.input_layernorm)?;
let attention_output =
self.self_attention
.forward(&layernorm_output, attention_mask, rotary_emb)?;
let residual = if self.apply_residual_connection_post_layernorm {
&layernorm_output
} else {
xs
};
let layernorm_input = (residual + attention_output)?;
let layernorm_output = layernorm_input.apply(&self.post_attention_layernorm)?;
let mlp_output = layernorm_output.apply(&self.mlp)?;
let residual = if self.apply_residual_connection_post_layernorm {
&layernorm_output
} else {
&layernorm_input
};
mlp_output + residual
}
}
#[derive(Debug, Clone)]
struct Transformer {
layers: Vec<Block>,
final_layernorm: Option<candle_nn::LayerNorm>,
rotary_emb: RotaryEmbedding,
}
impl Transformer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_l = vb.pp("layers");
let mut layers = Vec::with_capacity(cfg.num_layers);
for layer_index in 0..cfg.num_layers {
let block = Block::new(layer_index + 1, cfg, vb_l.pp(layer_index))?;
layers.push(block)
}
let final_layernorm = if cfg.post_layer_norm {
let ln = if cfg.rmsnorm {
candle_nn::rms_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("final_layernorm"),
)?
.into_inner()
} else {
candle_nn::layer_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("final_layernorm"),
)?
};
Some(ln)
} else {
None
};
let rotary_emb = RotaryEmbedding::new(cfg, vb.dtype(), vb.device())?;
Ok(Self {
layers,
final_layernorm,
rotary_emb,
})
}
fn reset_kv_cache(&mut self) {
for block in self.layers.iter_mut() {
block.reset_kv_cache()
}
}
fn forward(&mut self, xs: &Tensor, attention_mask: &Option<Tensor>) -> Result<Tensor> {
let mut xs = xs.clone();
for block in self.layers.iter_mut() {
xs = block.forward(&xs, attention_mask, &self.rotary_emb)?
}
match self.final_layernorm.as_ref() {
None => Ok(xs),
Some(ln) => xs.apply(ln),
}
}
}
#[derive(Debug, Clone)]
struct Embedding {
word_embeddings: candle_nn::Embedding,
fp32_residual_connection: bool,
}
impl Embedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let word_embeddings = candle_nn::embedding(
cfg.padded_vocab_size,
cfg.hidden_size,
vb.pp("word_embeddings"),
)?;
Ok(Self {
word_embeddings,
fp32_residual_connection: cfg.fp32_residual_connection,
})
}
}
impl Module for Embedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.word_embeddings.forward(xs)?.transpose(0, 1)?; if self.fp32_residual_connection {
xs.to_dtype(candle::DType::F32)
} else {
xs.contiguous()
}
}
}
#[derive(Debug, Clone)]
pub struct Model {
embedding: Embedding,
encoder: Transformer,
output_layer: Linear,
}
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device)
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("transformer");
let embedding = Embedding::new(cfg, vb.pp("embedding"))?;
let encoder = Transformer::new(cfg, vb.pp("encoder"))?;
let output_layer = linear(
cfg.hidden_size,
cfg.padded_vocab_size,
false,
vb.pp("output_layer"),
)?;
Ok(Self {
embedding,
encoder,
output_layer,
})
}
pub fn reset_kv_cache(&mut self) {
self.encoder.reset_kv_cache()
}
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let (_b_size, seq_len) = xs.dims2()?;
let input_embeds = xs.apply(&self.embedding)?;
let attention_mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.device())?)
};
let xs = self.encoder.forward(&input_embeds, &attention_mask)?;
let lm_logits = xs.i(seq_len - 1)?.apply(&self.output_layer)?;
Ok(lm_logits)
}
}