1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use candle::{IndexOp, Result, Tensor, D};
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};

const IMG_SIZE: usize = 518;
const PATCH_SIZE: usize = 14;
const NUM_CLASSES: usize = 1000;

fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
    if bias {
        candle_nn::linear(in_dim, out_dim, vb)
    } else {
        candle_nn::linear_no_bias(in_dim, out_dim, vb)
    }
}

#[derive(Debug)]
struct Attention {
    qkv: Linear,
    proj: Linear,
    num_heads: usize,
    scale: f64,
}

impl Attention {
    fn new(
        vb: VarBuilder,
        dim: usize,
        num_heads: usize,
        qkv_bias: bool,
        proj_bias: bool,
    ) -> Result<Self> {
        let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
        let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
        let scale = 1. / ((dim / num_heads) as f64).sqrt();
        Ok(Self {
            qkv,
            proj,
            num_heads,
            scale,
        })
    }
}

impl Module for Attention {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let (b, n, c) = xs.dims3()?;
        let qkv = self
            .qkv
            .forward(xs)?
            .reshape((b, n, 3, self.num_heads, c / self.num_heads))?
            .transpose(1, 2)? // 02134
            .transpose(0, 1)? // 20134
            .transpose(2, 3)?; // 20314
        let q = (qkv.i(0)? * self.scale)?;
        let k = qkv.i(1)?.contiguous()?;
        let v = qkv.i(2)?.contiguous()?;
        let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?;
        let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
        self.proj.forward(&attn)
    }
}

#[derive(Debug)]
struct LayerScale {
    gamma: Tensor,
}

impl LayerScale {
    fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
        let gamma = vb.get(dim, "gamma")?;
        Ok(Self { gamma })
    }
}

impl Module for LayerScale {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        xs.broadcast_mul(&self.gamma)
    }
}

#[derive(Debug)]
struct Mlp {
    fc1: Linear,
    fc2: Linear,
}

impl Mlp {
    fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
        let out_features = in_features;
        let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
        let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
        Ok(Self { fc1, fc2 })
    }
}

impl Module for Mlp {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let xs = self.fc1.forward(xs)?.gelu()?;
        self.fc2.forward(&xs)
    }
}

#[derive(Debug)]
struct Block {
    norm1: LayerNorm,
    attn: Attention,
    ls1: LayerScale,
    norm2: LayerNorm,
    mlp: Mlp,
    ls2: LayerScale,
}

impl Block {
    fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
        let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
        let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?;
        let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
        let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
        let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
        let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
        Ok(Self {
            norm1,
            attn,
            ls1,
            norm2,
            mlp,
            ls2,
        })
    }
}

impl Module for Block {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let residual = xs;
        let xs = self
            .ls1
            .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
        let xs = (xs + residual)?;
        let residual = &xs;
        let xs = self
            .ls2
            .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
        xs + residual
    }
}

#[derive(Debug)]
struct PatchEmbed {
    proj: candle_nn::Conv2d,
    patch_size: (usize, usize),
    num_patches: usize,
}

impl PatchEmbed {
    fn new(
        vb: VarBuilder,
        img_size: usize,
        patch_size: usize,
        in_chans: usize,
        embed_dim: usize,
    ) -> Result<Self> {
        let config = candle_nn::Conv2dConfig {
            stride: patch_size,
            ..Default::default()
        };
        let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
        let num_patches = (img_size / patch_size) * (img_size / patch_size);
        Ok(Self {
            proj,
            patch_size: (patch_size, patch_size),
            num_patches,
        })
    }
}

impl Module for PatchEmbed {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let (_b, _c, h, w) = xs.dims4()?;
        let (patch_h, patch_w) = self.patch_size;
        if (h % patch_h) != 0 {
            candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
        }
        if (w % patch_w) != 0 {
            candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
        }
        let xs = self.proj.forward(xs)?;
        let (b, c, h, w) = xs.dims4()?;
        // flatten embeddings.
        xs.reshape((b, c, h * w))?.transpose(1, 2)
    }
}

#[derive(Debug)]
pub struct DinoVisionTransformer {
    patch_embed: PatchEmbed,
    cls_token: Tensor,
    pos_embed: Tensor,
    blocks: Vec<Block>,
    norm: LayerNorm,
    head: Linear,
}

impl DinoVisionTransformer {
    pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
        let patch_embed =
            PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?;
        let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
        let num_tokens = 1;
        let pos_embed = vb.get(
            (1, patch_embed.num_patches + num_tokens, embed_dim),
            "pos_embed",
        )?;
        let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?;
        let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?;
        let vb_b = vb.pp("blocks");
        let blocks = (0..depth)
            .map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads))
            .collect::<Result<Vec<_>>>()?;
        Ok(Self {
            patch_embed,
            cls_token,
            pos_embed,
            blocks,
            norm,
            head,
        })
    }

    fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> {
        let npatch = xs.dim(1)? - 1;
        let n = self.pos_embed.dim(1)? - 1;
        let sqrt_n = (n as f64).sqrt();
        if npatch == n && w == h {
            return Ok(xs.clone());
        }
        let class_pos_embed = self.pos_embed.i((.., ..1))?;
        let patch_pos_embed = self.pos_embed.i((.., 1..))?;
        let dim = xs.dim(D::Minus1)?;
        let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1);
        let patch_pos_embed = patch_pos_embed
            .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))?
            .transpose(2, 3)?
            .transpose(1, 2)?;
        // This uses bicubic interpolation in the original implementation.
        let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?;
        let el_count = patch_pos_embed.shape().elem_count();
        let patch_pos_embed =
            patch_pos_embed
                .transpose(1, 2)?
                .transpose(2, 3)?
                .reshape((1, el_count / dim, dim))?;
        Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1)
    }

    fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
        let (_b, _nc, w, h) = xs.dims4()?;
        let xs = self.patch_embed.forward(xs)?;
        let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?;
        &xs + &self.interpolate_pos_encoding(&xs, w, h)?
    }
}

impl Module for DinoVisionTransformer {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let mut xs = self.prepare_tokens_with_mask(xs)?;
        for blk in self.blocks.iter() {
            xs = blk.forward(&xs)?
        }
        let xs = self.norm.forward(&xs)?;
        let xs_norm_clstoken = xs.i((.., 0))?;
        let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?;
        let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?;
        self.head.forward(&xs)
    }
}

pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> {
    DinoVisionTransformer::new(vb, 12, 384, 6)
}