#![allow(unused)]
use candle::{DType, IndexOp, Layout, Module, Result, Shape, Tensor, D};
use candle_nn::{conv1d, Conv1d, Conv1dConfig, ConvTranspose1d, VarBuilder};
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Deserialize)]
pub enum NormType {
WeightNorm,
TimeGroupNorm,
None,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Deserialize)]
pub enum PadMode {
Constant,
Reflect,
Replicate,
}
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct Config {
pub target_bandwidths: Vec<f64>,
pub sampling_rate: usize,
pub audio_channels: usize,
pub normalize: bool,
pub chunk_length_s: Option<usize>,
pub overlap: Option<usize>,
pub hidden_size: usize,
pub num_filters: usize,
pub num_residual_layers: usize,
pub upsampling_ratios: Vec<usize>,
pub norm_type: NormType,
pub kernel_size: usize,
pub last_kernel_size: usize,
pub residual_kernel_size: usize,
pub dilation_growth_rate: usize,
pub use_causal_conv: bool,
pub pad_mode: PadMode,
pub compress: usize,
pub num_lstm_layers: usize,
pub trim_right_ratio: f64,
pub codebook_size: usize,
pub codebook_dim: Option<usize>,
pub use_conv_shortcut: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
target_bandwidths: vec![1.5, 3.0, 6.0, 12.0, 24.0],
sampling_rate: 24_000,
audio_channels: 1,
normalize: false,
chunk_length_s: None,
overlap: None,
hidden_size: 128,
num_filters: 32,
num_residual_layers: 1,
upsampling_ratios: vec![8, 5, 4, 2],
norm_type: NormType::WeightNorm,
kernel_size: 7,
last_kernel_size: 7,
residual_kernel_size: 3,
dilation_growth_rate: 2,
use_causal_conv: true,
pad_mode: PadMode::Replicate,
compress: 2,
num_lstm_layers: 2,
trim_right_ratio: 1.0,
codebook_size: 1024,
codebook_dim: None,
use_conv_shortcut: true,
}
}
}
impl Config {
fn codebook_dim(&self) -> usize {
self.codebook_dim.unwrap_or(self.hidden_size)
}
fn frame_rate(&self) -> usize {
let hop_length: usize = self.upsampling_ratios.iter().product();
(self.sampling_rate + hop_length - 1) / hop_length
}
fn num_quantizers(&self) -> usize {
let num = 1000f64
* self
.target_bandwidths
.last()
.expect("empty target_bandwidths");
(num as usize) / (self.frame_rate() * 10)
}
}
fn get_extra_padding_for_conv1d(
xs: &Tensor,
k_size: usize,
stride: usize,
padding_total: usize,
) -> Result<usize> {
let len = xs.dim(D::Minus1)?;
let n_frames = (len + padding_total).saturating_sub(k_size) as f64 / stride as f64 + 1.0;
let ideal_len =
((n_frames.ceil() as usize - 1) * stride + k_size).saturating_sub(padding_total);
Ok(ideal_len.saturating_sub(len))
}
fn pad1d(xs: &Tensor, pad_l: usize, pad_r: usize, mode: PadMode) -> Result<Tensor> {
match mode {
PadMode::Constant => xs.pad_with_zeros(D::Minus1, pad_l, pad_r),
PadMode::Reflect => candle::bail!("pad-mode 'reflect' is not supported"),
PadMode::Replicate => xs.pad_with_same(D::Minus1, pad_l, pad_r),
}
}
pub fn conv1d_weight_norm(
in_c: usize,
out_c: usize,
kernel_size: usize,
config: candle_nn::Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight_g = vb.get((out_c, 1, 1), "weight_g")?;
let weight_v = vb.get((out_c, in_c, kernel_size), "weight_v")?;
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
let bias = vb.get(out_c, "bias")?;
Ok(Conv1d::new(weight, Some(bias), config))
}
fn conv_transpose1d_weight_norm(
in_c: usize,
out_c: usize,
kernel_size: usize,
bias: bool,
config: candle_nn::ConvTranspose1dConfig,
vb: VarBuilder,
) -> Result<ConvTranspose1d> {
let weight_g = vb.get((in_c, 1, 1), "weight_g")?;
let weight_v = vb.get((in_c, out_c, kernel_size), "weight_v")?;
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
let bias = if bias {
Some(vb.get(out_c, "bias")?)
} else {
None
};
Ok(ConvTranspose1d::new(weight, bias, config))
}
struct CodebookEncode;
impl candle::CustomOp2 for CodebookEncode {
fn name(&self) -> &'static str {
"cb"
}
fn cpu_fwd(
&self,
lhs_storage: &candle::CpuStorage,
lhs_layout: &Layout,
rhs_storage: &candle::CpuStorage,
rhs_layout: &Layout,
) -> Result<(candle::CpuStorage, Shape)> {
use rayon::prelude::*;
let (lhs_dim1, lhs_dim2) = lhs_layout.shape().dims2()?;
let (rhs_dim1, rhs_dim2) = rhs_layout.shape().dims2()?;
if lhs_dim2 != rhs_dim2 {
candle::bail!("CodebookEncode, mismatch on last dim, {lhs_layout:?} {rhs_layout:?}");
}
if lhs_dim2 == 0 {
candle::bail!("CodebookEncode, empty last dim {lhs_layout:?}")
}
let lhs = match lhs_layout.contiguous_offsets() {
None => candle::bail!("CodebookEncode, lhs has to be contiguous, got {lhs_layout:?}"),
Some((o1, o2)) => {
let slice = lhs_storage.as_slice::<f32>()?;
&slice[o1..o2]
}
};
let rhs = match rhs_layout.contiguous_offsets() {
None => candle::bail!("CodebookEncode, rhs has to be contiguous, got {rhs_layout:?}"),
Some((o1, o2)) => {
let slice = rhs_storage.as_slice::<f32>()?;
&slice[o1..o2]
}
};
let dst = (0..lhs_dim1)
.into_par_iter()
.map(|idx1| {
let mut where_min = 0;
let mut min_dist = f32::INFINITY;
let lhs = &lhs[idx1 * lhs_dim2..(idx1 + 1) * lhs_dim2];
for idx2 in 0..rhs_dim1 {
let rhs = &rhs[idx2 * rhs_dim2..(idx2 + 1) * rhs_dim2];
let mut dist = 0f32;
for (a, b) in lhs.iter().zip(rhs.iter()) {
dist += (a - b) * (a - b)
}
if dist < min_dist {
min_dist = dist;
where_min = idx2;
}
}
where_min as u32
})
.collect();
let storage = candle::WithDType::to_cpu_storage_owned(dst);
Ok((storage, (lhs_dim1,).into()))
}
}
#[derive(Clone, Debug)]
pub struct EuclideanCodebook {
inited: Tensor,
cluster_size: Tensor,
embed: candle_nn::Embedding,
embed_avg: Tensor,
c2: Tensor,
}
impl EuclideanCodebook {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let inited = vb.get(1, "inited")?;
let cluster_size = vb.get(cfg.codebook_size, "cluster_size")?;
let e_shape = (cfg.codebook_size, cfg.codebook_dim());
let embed = vb.get(e_shape, "embed")?;
let c2 = ((&embed * &embed)?.sum(D::Minus1)? / 2.0)?;
let embed_avg = vb.get(e_shape, "embed_avg")?;
Ok(Self {
inited,
cluster_size,
embed: candle_nn::Embedding::new(embed, cfg.codebook_dim()),
embed_avg,
c2,
})
}
pub fn encode_slow(&self, xs: &Tensor) -> Result<Tensor> {
let mut target_shape = xs.dims().to_vec();
target_shape.pop();
let xs = xs.flatten_to(D::Minus2)?;
let _ = xs.dims2()?;
let dot_prod = xs.matmul(&self.embed.embeddings().t()?)?;
let codes = self.c2.broadcast_sub(&dot_prod)?.argmin(D::Minus1)?;
codes.reshape(target_shape)
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let mut target_shape = xs.dims().to_vec();
target_shape.pop();
let xs = xs.flatten_to(D::Minus2)?;
let _ = xs.dims2()?;
let codes = Tensor::apply_op2(&xs, self.embed.embeddings(), CodebookEncode)?;
codes.reshape(target_shape)
}
pub fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
let quantize = self.embed.forward(embed_ind)?;
Ok(quantize)
}
}
#[derive(Clone, Debug)]
pub struct VectorQuantization {
codebook: EuclideanCodebook,
}
impl VectorQuantization {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let codebook = EuclideanCodebook::new(cfg, vb.pp("codebook"))?;
Ok(Self { codebook })
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let xs = xs.transpose(1, 2)?;
self.codebook.encode_slow(&xs)
}
pub fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
let quantize = self.codebook.decode(embed_ind)?;
let quantize = quantize.transpose(1, 2)?;
Ok(quantize)
}
}
#[derive(Clone, Debug)]
pub struct ResidualVectorQuantizer {
layers: Vec<VectorQuantization>,
dtype: DType,
}
impl ResidualVectorQuantizer {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = &vb.pp("layers");
let layers = (0..cfg.num_quantizers())
.map(|i| VectorQuantization::new(cfg, vb.pp(i)))
.collect::<Result<Vec<_>>>()?;
Ok(Self {
layers,
dtype: vb.dtype(),
})
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let mut codes = Vec::with_capacity(self.layers.len());
let mut residual = xs.clone();
for layer in self.layers.iter() {
let indices = layer.encode(&residual)?;
let quantized = layer.decode(&indices)?;
residual = (residual - quantized)?;
codes.push(indices)
}
Tensor::stack(&codes, 0)
}
pub fn decode(&self, codes: &Tensor) -> Result<Tensor> {
let mut quantized_out = Tensor::zeros((), self.dtype, codes.device())?;
let ncodes = codes.dim(0)?;
if ncodes > self.layers.len() {
candle::bail!(
"codes shape {:?} does not match the number of quantization layers {}",
codes.shape(),
self.layers.len()
)
}
for (i, layer) in self.layers.iter().take(ncodes).enumerate() {
let quantized = layer.decode(&codes.i(i)?)?;
quantized_out = quantized.broadcast_add(&quantized_out)?;
}
Ok(quantized_out)
}
}
#[derive(Clone, Debug)]
pub struct EncodecLSTM {
layers: Vec<candle_nn::LSTM>,
}
impl EncodecLSTM {
pub fn new(dim: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = &vb.pp("lstm");
let mut layers = vec![];
for layer_idx in 0..cfg.num_lstm_layers {
let config = candle_nn::LSTMConfig {
layer_idx,
..Default::default()
};
let lstm = candle_nn::lstm(dim, dim, config, vb.clone())?;
layers.push(lstm)
}
Ok(Self { layers })
}
}
impl Module for EncodecLSTM {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
use candle_nn::RNN;
let xs = xs.t()?;
let residual = &xs;
let mut xs = xs.clone();
for layer in self.layers.iter() {
let states = layer.seq(&xs)?;
xs = layer.states_to_tensor(&states)?;
}
let xs = (xs + residual)?.t()?;
Ok(xs)
}
}
#[derive(Clone, Debug)]
pub struct EncodecConvTranspose1d {
conv: ConvTranspose1d,
}
impl EncodecConvTranspose1d {
fn new(
in_c: usize,
out_c: usize,
k: usize,
stride: usize,
_cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let cfg = candle_nn::ConvTranspose1dConfig {
stride,
..Default::default()
};
let conv = conv_transpose1d_weight_norm(in_c, out_c, k, true, cfg, vb.pp("conv"))?;
Ok(Self { conv })
}
}
impl Module for EncodecConvTranspose1d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.conv)
}
}
#[derive(Clone, Debug)]
pub struct EncodecConv1d {
causal: bool,
conv: Conv1d,
norm: Option<candle_nn::GroupNorm>,
pad_mode: PadMode,
}
impl EncodecConv1d {
pub fn new(
in_c: usize,
out_c: usize,
kernel_size: usize,
stride: usize,
dilation: usize,
cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let conv = match cfg.norm_type {
NormType::WeightNorm => conv1d_weight_norm(
in_c,
out_c,
kernel_size,
candle_nn::Conv1dConfig {
stride,
dilation,
..Default::default()
},
vb.pp("conv"),
)?,
NormType::None | NormType::TimeGroupNorm => conv1d(
in_c,
out_c,
kernel_size,
candle_nn::Conv1dConfig {
padding: 0,
stride,
groups: 1,
dilation: 1,
},
vb.pp("conv"),
)?,
};
let norm = match cfg.norm_type {
NormType::None | NormType::WeightNorm => None,
NormType::TimeGroupNorm => {
let gn = candle_nn::group_norm(1, out_c, 1e-5, vb.pp("norm"))?;
Some(gn)
}
};
Ok(Self {
causal: cfg.use_causal_conv,
conv,
norm,
pad_mode: cfg.pad_mode,
})
}
}
impl Module for EncodecConv1d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_b, _t, _c) = xs.dims3()?;
let k_size = self.conv.weight().dim(D::Minus1)?;
let conv_cfg = self.conv.config();
let k_size = (k_size - 1) * conv_cfg.dilation + 1;
let padding_total = k_size - conv_cfg.stride;
let extra_padding =
get_extra_padding_for_conv1d(xs, k_size, conv_cfg.stride, padding_total)?;
let xs = if self.causal {
pad1d(xs, padding_total, extra_padding, self.pad_mode)?
} else {
let padding_right = padding_total / 2;
let padding_left = padding_total - padding_right;
pad1d(
xs,
padding_left,
padding_right + extra_padding,
self.pad_mode,
)?
};
let xs = self.conv.forward(&xs)?;
match &self.norm {
None => Ok(xs),
Some(norm) => xs.apply(norm),
}
}
}
#[derive(Clone, Debug)]
pub struct EncodecResnetBlock {
block_conv1: EncodecConv1d,
block_conv2: EncodecConv1d,
shortcut: Option<EncodecConv1d>,
}
impl EncodecResnetBlock {
pub fn new(
dim: usize,
(dilation1, dilation2): (usize, usize),
cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let h = dim / cfg.compress;
let mut layer = Layer::new(vb.pp("block"));
layer.inc();
let block_conv1 = EncodecConv1d::new(
dim,
h,
cfg.residual_kernel_size,
1,
dilation1,
cfg,
layer.next(),
)?;
layer.inc();
let block_conv2 = EncodecConv1d::new(h, dim, 1, 1, dilation2, cfg, layer.next())?;
let shortcut = if cfg.use_conv_shortcut {
let conv = EncodecConv1d::new(dim, dim, 1, 1, 1, cfg, vb.pp("shortcut"))?;
Some(conv)
} else {
None
};
Ok(Self {
block_conv1,
block_conv2,
shortcut,
})
}
}
impl Module for EncodecResnetBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs.clone();
let xs = xs.elu(1.)?;
let xs = self.block_conv1.forward(&xs)?;
let xs = xs.elu(1.)?;
let xs = self.block_conv2.forward(&xs)?;
let xs = match &self.shortcut {
None => (xs + residual)?,
Some(shortcut) => xs.add(&shortcut.forward(&residual)?)?,
};
Ok(xs)
}
}
struct Layer<'a> {
vb: VarBuilder<'a>,
cnt: usize,
}
impl<'a> Layer<'a> {
fn new(vb: VarBuilder<'a>) -> Self {
Self { vb, cnt: 0 }
}
fn inc(&mut self) {
self.cnt += 1;
}
fn next(&mut self) -> VarBuilder {
let vb = self.vb.pp(&self.cnt.to_string());
self.cnt += 1;
vb
}
}
#[derive(Clone, Debug)]
pub struct Encoder {
init_conv: EncodecConv1d,
sampling_layers: Vec<(Vec<EncodecResnetBlock>, EncodecConv1d)>,
final_lstm: EncodecLSTM,
final_conv: EncodecConv1d,
}
impl Encoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let mut layer = Layer::new(vb.pp("layers"));
let init_conv = EncodecConv1d::new(
cfg.audio_channels,
cfg.num_filters,
cfg.kernel_size,
1,
1,
cfg,
layer.next(),
)?;
let mut sampling_layers = vec![];
let mut scaling = 1;
for &ratio in cfg.upsampling_ratios.iter().rev() {
let current_scale = scaling * cfg.num_filters;
let mut resnets = vec![];
for j in 0..(cfg.num_residual_layers as u32) {
let resnet = EncodecResnetBlock::new(
current_scale,
(cfg.dilation_growth_rate.pow(j), 1),
cfg,
layer.next(),
)?;
resnets.push(resnet)
}
layer.inc(); let conv1d = EncodecConv1d::new(
current_scale,
current_scale * 2,
ratio * 2,
ratio,
1,
cfg,
layer.next(),
)?;
sampling_layers.push((resnets, conv1d));
scaling *= 2;
}
let final_lstm = EncodecLSTM::new(cfg.num_filters * scaling, cfg, layer.next())?;
layer.inc(); let final_conv = EncodecConv1d::new(
cfg.num_filters * scaling,
cfg.hidden_size,
cfg.last_kernel_size,
1,
1,
cfg,
layer.next(),
)?;
Ok(Self {
init_conv,
sampling_layers,
final_conv,
final_lstm,
})
}
}
impl Module for Encoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?;
for (resnets, conv) in self.sampling_layers.iter() {
for resnet in resnets.iter() {
xs = xs.apply(resnet)?;
}
xs = xs.elu(1.0)?.apply(conv)?;
}
xs.apply(&self.final_lstm)?
.elu(1.0)?
.apply(&self.final_conv)
}
}
#[derive(Clone, Debug)]
pub struct Decoder {
init_conv: EncodecConv1d,
init_lstm: EncodecLSTM,
sampling_layers: Vec<(EncodecConvTranspose1d, Vec<EncodecResnetBlock>)>,
final_conv: EncodecConv1d,
}
impl Decoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let mut layer = Layer::new(vb.pp("layers"));
let mut scaling = usize::pow(2, cfg.upsampling_ratios.len() as u32);
let init_conv = EncodecConv1d::new(
cfg.hidden_size,
cfg.num_filters * scaling,
cfg.last_kernel_size,
1,
1,
cfg,
layer.next(),
)?;
let init_lstm = EncodecLSTM::new(cfg.num_filters * scaling, cfg, layer.next())?;
let mut sampling_layers = vec![];
for &ratio in cfg.upsampling_ratios.iter() {
let current_scale = scaling * cfg.num_filters;
layer.inc(); let conv1d = EncodecConvTranspose1d::new(
current_scale,
current_scale / 2,
ratio * 2,
ratio,
cfg,
layer.next(),
)?;
let mut resnets = vec![];
for j in 0..(cfg.num_residual_layers as u32) {
let resnet = EncodecResnetBlock::new(
current_scale / 2,
(cfg.dilation_growth_rate.pow(j), 1),
cfg,
layer.next(),
)?;
resnets.push(resnet)
}
sampling_layers.push((conv1d, resnets));
scaling /= 2;
}
layer.inc(); let final_conv = EncodecConv1d::new(
cfg.num_filters,
cfg.audio_channels,
cfg.last_kernel_size,
1,
1,
cfg,
layer.next(),
)?;
Ok(Self {
init_conv,
init_lstm,
sampling_layers,
final_conv,
})
}
}
impl Module for Decoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?.apply(&self.init_lstm)?;
for (conv, resnets) in self.sampling_layers.iter() {
xs = xs.elu(1.)?.apply(conv)?;
for resnet in resnets.iter() {
xs = xs.apply(resnet)?
}
}
xs.elu(1.)?.apply(&self.final_conv)
}
}
#[derive(Debug)]
pub struct Model {
encoder: Encoder,
decoder: Decoder,
quantizer: ResidualVectorQuantizer,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let encoder = Encoder::new(cfg, vb.pp("encoder"))?;
let decoder = Decoder::new(cfg, vb.pp("decoder"))?;
let quantizer = ResidualVectorQuantizer::new(cfg, vb.pp("quantizer"))?;
Ok(Self {
encoder,
decoder,
quantizer,
})
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.encoder.forward(xs)?;
let codes = self.quantizer.encode(&xs)?;
codes.transpose(0, 1)
}
pub fn decode(&self, codes: &Tensor) -> Result<Tensor> {
let (_b_sz, _codebooks, _seqlen) = codes.dims3()?;
let codes = codes.transpose(0, 1)?;
let embeddings = self.quantizer.decode(&codes)?;
let outputs = self.decoder.forward(&embeddings)?;
Ok(outputs)
}
}