1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use candle::{DType, Device, Result, Tensor, D};
use candle_nn::{embedding, linear_b as linear, Embedding, LayerNorm, Linear, Module, VarBuilder};
use serde::Deserialize;

const MAX_SEQ_LEN: usize = 5000;

fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
    let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) {
        (Ok(weight), Ok(bias)) => (weight, bias),
        (Err(err), _) | (_, Err(err)) => {
            if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) {
                (weight, bias)
            } else {
                return Err(err);
            }
        }
    };
    Ok(LayerNorm::new(weight, bias, eps))
}

// https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py
#[derive(Clone, Debug, Deserialize)]
pub struct Config {
    pub vocab_size: usize,
    pub hidden_size: usize,
    pub num_hidden_layers: usize,
    pub num_attention_heads: usize,
    pub layer_norm_epsilon: f64,
    pub initializer_range: f64,
    pub use_cache: bool,
    pub bos_token_id: u32,
    pub eos_token_id: u32,
    pub hidden_dropout: f64,
    pub attention_dropout: f64,
    pub n_head_kv: Option<usize>,
    pub alibi: bool,
    pub new_decoder_architecture: bool,
    pub multi_query: bool,
    pub parallel_attn: bool,
    pub bias: bool,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            vocab_size: 65024,
            hidden_size: 4544,
            num_hidden_layers: 32,
            num_attention_heads: 71,
            layer_norm_epsilon: 1e-5,
            initializer_range: 0.02,
            use_cache: true,
            bos_token_id: 11,
            eos_token_id: 11,
            hidden_dropout: 0.0,
            attention_dropout: 0.0,
            n_head_kv: None,
            alibi: false,
            new_decoder_architecture: false,
            multi_query: true,
            parallel_attn: true,
            bias: false,
        }
    }
}

impl Config {
    pub fn validate(&self) -> Result<()> {
        if self.alibi {
            candle::bail!("alibi is not supported");
        }
        if self.new_decoder_architecture {
            candle::bail!("new_decoder_architecture is not supported");
        }
        if self.n_head_kv.is_some() {
            candle::bail!("n_head_kv is not supported");
        }
        Ok(())
    }

    // https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
    pub fn falcon7b() -> Self {
        // This is currently on par with the defaults, the defaults come from the Python default
        // arguments for the config initialization whereas the following come from the json config.
        Self {
            vocab_size: 65024,
            hidden_size: 4544,
            num_hidden_layers: 32,
            num_attention_heads: 71,
            layer_norm_epsilon: 1e-5,
            initializer_range: 0.02,
            use_cache: true,
            bos_token_id: 11,
            eos_token_id: 11,
            hidden_dropout: 0.,
            attention_dropout: 0.,
            n_head_kv: None,
            alibi: false,
            new_decoder_architecture: false,
            multi_query: true,
            parallel_attn: true,
            bias: false,
        }
    }

    fn head_dim(&self) -> usize {
        self.hidden_size / self.num_attention_heads
    }

    fn rotary(&self) -> bool {
        !self.alibi
    }
}

fn rotate_half(x: &Tensor) -> Result<Tensor> {
    let l = x.dim(D::Minus1)?;
    let x1 = x.narrow(D::Minus1, 0, l / 2)?;
    let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?;
    let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
    Ok(x21)
}

#[derive(Debug, Clone)]
struct FalconRotaryEmbedding {
    inv_freq: Tensor,
    cache: Option<(usize, Tensor, Tensor)>,
}

impl FalconRotaryEmbedding {
    fn load(device: &Device, cfg: &Config) -> Result<Self> {
        let head_dim = cfg.head_dim();
        let inv_freq: Vec<_> = (0..head_dim)
            .step_by(2)
            .map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32))
            .collect();
        Ok(Self {
            inv_freq: Tensor::new(inv_freq.as_slice(), device)?,
            cache: None,
        })
    }

    fn cos_sin(
        &mut self,
        seq_len: usize,
        device: &Device,
        dtype: DType,
    ) -> Result<(Tensor, Tensor)> {
        match &self.cache {
            Some((s, cos, sin)) if *s == seq_len => {
                return Ok((cos.clone(), sin.clone()));
            }
            _ => {}
        }
        let t = Tensor::arange(0, seq_len as u32, device)?.to_dtype(dtype)?;
        let inv_freq = self.inv_freq.to_dtype(dtype)?;
        let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?;
        let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
        let cos = emb.cos()?;
        let sin = emb.sin()?;
        self.cache = Some((seq_len, cos.clone(), sin.clone()));
        Ok((cos, sin))
    }

    fn forward(
        &mut self,
        query: &Tensor,
        key: &Tensor,
        past_kv_len: usize,
    ) -> Result<(Tensor, Tensor)> {
        let (_batch, seq_len, _head_dim) = query.dims3()?;
        let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, query.device(), query.dtype())?;
        let cos = cos.narrow(0, past_kv_len, seq_len)?;
        let sin = sin.narrow(0, past_kv_len, seq_len)?;
        let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?;
        let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?;
        Ok((qs, ks))
    }
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
    let shape = mask.shape();
    let on_true = Tensor::new(on_true, on_false.device())?
        .to_dtype(on_false.dtype())?
        .broadcast_as(shape.dims())?;
    let m = mask.where_cond(&on_true, on_false)?;
    Ok(m)
}

#[derive(Debug, Clone)]
struct FalconAttention {
    query_key_value: Linear,
    dense: Linear,
    maybe_rotary: Option<FalconRotaryEmbedding>,
    kv_cache: Option<(Tensor, Tensor)>,
    inv_norm_factor: f64,
    multi_query: bool,
    use_cache: bool,
    num_heads: usize,
    head_dim: usize,
    n_head_kv: usize,
}

impl FalconAttention {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let maybe_rotary = if cfg.rotary() {
            let rotary = FalconRotaryEmbedding::load(vb.device(), cfg)?;
            Some(rotary)
        } else {
            None
        };
        let head_dim = cfg.head_dim();
        let hidden_size = cfg.hidden_size;
        let qkv_out_dim = if cfg.multi_query {
            hidden_size + 2 * head_dim
        } else {
            3 * hidden_size
        };
        let query_key_value = linear(hidden_size, qkv_out_dim, cfg.bias, vb.pp("query_key_value"))?;
        let dense = linear(hidden_size, hidden_size, cfg.bias, vb.pp("dense"))?;
        Ok(Self {
            query_key_value,
            dense,
            maybe_rotary,
            kv_cache: None,
            inv_norm_factor: 1. / (head_dim as f64).sqrt(),
            multi_query: cfg.multi_query,
            use_cache: cfg.use_cache,
            num_heads: cfg.num_attention_heads,
            n_head_kv: cfg.n_head_kv.unwrap_or(1),
            head_dim,
        })
    }

    fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
        let (b_sz, seq_len, _) = fused_qkv.dims3()?;
        if !self.multi_query {
            let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?;
            let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?;
            let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?;
            let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?;
            Ok((q, k, v))
        } else {
            let fused_qkv =
                fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?;
            let d = fused_qkv.dim(D::Minus2)?;
            let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?;
            let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?;
            let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?;
            Ok((q, k, v))
        }
    }

    fn forward(&mut self, x: &Tensor, mask: Option<&Tensor>, past_kv_len: usize) -> Result<Tensor> {
        let fused_qkv = self.query_key_value.forward(x)?;
        let head_dim = self.head_dim;
        let (query, key, value) = self.split_heads(&fused_qkv)?;
        let (b_sz, seq_len, _, _) = query.dims4()?;
        let query = query
            .transpose(1, 2)?
            .reshape((b_sz * self.num_heads, seq_len, head_dim))?;
        let key = key
            .transpose(1, 2)?
            .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?;
        let value = value
            .transpose(1, 2)?
            .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?;
        let (query, key) = if let Some(r) = &mut self.maybe_rotary {
            r.forward(&query, &key, past_kv_len)?
        } else {
            (query, key)
        };
        let (mut key, mut value) = (key, value);
        if self.use_cache {
            if let Some((cache_k, cache_v)) = &self.kv_cache {
                // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
                // arbitrarily large sizes.
                key = Tensor::cat(&[cache_k, &key], 1)?.contiguous()?;
                value = Tensor::cat(&[cache_v, &value], 1)?.contiguous()?;
            }
            self.kv_cache = Some((key.clone(), value.clone()))
        }
        let query = query.reshape((b_sz * self.num_heads, seq_len, head_dim))?;
        let all_len = past_kv_len + seq_len;
        let key = key.reshape((b_sz * self.n_head_kv, all_len, head_dim))?;
        let value = value.reshape((b_sz * self.n_head_kv, all_len, head_dim))?;

        let (key, value) = if self.n_head_kv == 1 {
            (
                key.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?,
                value.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?,
            )
        } else {
            (key, value)
        };

        // Only handle the case where alibi is None here, and non-flash attention.
        let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?;
        let attention_scores = match mask {
            None => attention_scores,
            Some(mask) => {
                let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?
                    .to_dtype(query.dtype())?;
                attention_scores.broadcast_add(&mask.squeeze(1)?)?
            }
        };

        let attention_scores =
            candle_nn::ops::softmax(&attention_scores.to_dtype(DType::F32)?, D::Minus1)?
                .to_dtype(x.dtype())?;
        let attn_output = attention_scores
            .matmul(&value)?
            .reshape((b_sz, self.num_heads, seq_len, head_dim))?
            .transpose(1, 2)?
            .reshape((b_sz, seq_len, self.num_heads * head_dim))?;
        let attn_output = self.dense.forward(&attn_output)?;
        Ok(attn_output)
    }

    fn clear_kv_cache(&mut self) {
        self.kv_cache = None
    }
}

#[derive(Debug, Clone)]
struct FalconMlp {
    dense_h_to_4h: Linear,
    dense_4h_to_h: Linear,
}

impl FalconMlp {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let h = cfg.hidden_size;
        let b = cfg.bias;
        let dense_h_to_4h = linear(h, 4 * h, b, vb.pp("dense_h_to_4h"))?;
        let dense_4h_to_h = linear(4 * h, h, b, vb.pp("dense_4h_to_h"))?;
        Ok(Self {
            dense_h_to_4h,
            dense_4h_to_h,
        })
    }

    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = self.dense_h_to_4h.forward(x)?.gelu()?;
        let x = self.dense_4h_to_h.forward(&x)?;
        Ok(x)
    }
}

#[derive(Debug, Clone)]
struct FalconDecoderLayer {
    inp_layernorm: LayerNorm,
    self_attention: FalconAttention,
    post_attention_layernorm: Option<LayerNorm>,
    mlp: FalconMlp,
    parallel_attn: bool,
}

impl FalconDecoderLayer {
    fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
        let mlp = FalconMlp::load(vb.pp("mlp"), cfg)?;
        let inp_layernorm = layer_norm(
            cfg.hidden_size,
            cfg.layer_norm_epsilon,
            vb.pp("input_layernorm"),
        )?;
        let self_attention = FalconAttention::load(vb.pp("self_attention"), cfg)?;
        let post_attention_layernorm = if cfg.parallel_attn {
            None
        } else {
            let ln = layer_norm(
                cfg.hidden_size,
                cfg.layer_norm_epsilon,
                vb.pp("post_attention_layernorm"),
            )?;
            Some(ln)
        };
        Ok(Self {
            inp_layernorm,
            self_attention,
            post_attention_layernorm,
            mlp,
            parallel_attn: cfg.parallel_attn,
        })
    }

    fn forward(&mut self, x: &Tensor, mask: Option<&Tensor>, past_kv_len: usize) -> Result<Tensor> {
        let residual = x.clone();
        let ln_attn = self.inp_layernorm.forward(x)?;
        let attn_output = self.self_attention.forward(&ln_attn, mask, past_kv_len)?;
        let (residual, ln_mlp) = match &self.post_attention_layernorm {
            None => (residual, ln_attn),
            Some(pal) => {
                // This should include some dropout.
                let residual = (&attn_output + &residual)?;
                let ln_mlp = pal.forward(&residual)?;
                (residual, ln_mlp)
            }
        };
        let mlp_output = self.mlp.forward(&ln_mlp)?;

        let mlp_output = if self.parallel_attn {
            (mlp_output + attn_output)?
        } else {
            mlp_output
        };
        let output = (mlp_output + residual)?;
        Ok(output)
    }

    pub fn clear_kv_cache(&mut self) {
        self.self_attention.clear_kv_cache()
    }
}

#[derive(Debug, Clone)]
pub struct Falcon {
    word_embeddings: Embedding,
    blocks: Vec<FalconDecoderLayer>,
    ln_f: LayerNorm,
    lm_head: Linear,
    config: Config,
}

fn make_causal_mask(t: usize) -> Result<Tensor> {
    let mask: Vec<_> = (0..t)
        .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
        .collect();
    let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
    Ok(mask)
}

fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result<Tensor> {
    // let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?;
    let mask = make_causal_mask(seq_len)?;
    let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?;
    Ok(mask)
}

impl Falcon {
    pub fn config(&self) -> &Config {
        &self.config
    }

    pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
        let word_embeddings = embedding(
            cfg.vocab_size,
            cfg.hidden_size,
            vb.pp("transformer.word_embeddings"),
        )?;
        let blocks = (0..cfg.num_hidden_layers)
            .map(|i| FalconDecoderLayer::load(vb.pp(&format!("transformer.h.{i}")), &cfg))
            .collect::<Result<Vec<_>>>()?;
        let ln_f = layer_norm(
            cfg.hidden_size,
            cfg.layer_norm_epsilon,
            vb.pp("transformer.ln_f"),
        )?;
        let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb.pp("lm_head"))?;
        Ok(Self {
            word_embeddings,
            blocks,
            ln_f,
            lm_head,
            config: cfg,
        })
    }

    pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
        let (b_sz, seq_len) = input_ids.dims2()?;
        let mut hidden_state = self.word_embeddings.forward(input_ids)?;
        let past_kv_len = match &self.blocks[0].self_attention.kv_cache {
            Some((k, _)) => k.dim(1)?,
            None => 0,
        };
        let causal_mask = if seq_len <= 1 {
            None
        } else {
            Some(prepare_attn_mask(b_sz, seq_len)?.to_device(input_ids.device())?)
        };
        for block in self.blocks.iter_mut() {
            hidden_state = block.forward(&hidden_state, causal_mask.as_ref(), past_kv_len)?;
        }
        let hidden_state = self.ln_f.forward(&hidden_state)?;
        let hidden_state = hidden_state.narrow(1, seq_len - 1, 1)?;
        let logits = self.lm_head.forward(&hidden_state)?.squeeze(1)?;
        Ok(logits)
    }

    pub fn clear_kv_cache(&mut self) {
        for block in self.blocks.iter_mut() {
            block.clear_kv_cache()
        }
    }
}