1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/// A fast implementation of mamba for inference only.
/// This is based on: https://github.com/LaurentMazare/mamba.rs
use crate::models::with_tracing::{linear, linear_no_bias, Linear};
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{RmsNorm, VarBuilder};

const D_CONV: usize = 4;
const D_STATE: usize = 16;

#[derive(Debug, Clone, serde::Deserialize)]
pub struct Config {
    pub d_model: usize,
    pub n_layer: usize,
    pub vocab_size: usize,
    pub pad_vocab_size_multiple: usize,
}

impl Config {
    fn vocab_size(&self) -> usize {
        let pad = self.pad_vocab_size_multiple;
        (self.vocab_size + pad - 1) / pad * pad
    }

    fn dt_rank(&self) -> usize {
        (self.d_model + 15) / 16
    }

    fn d_inner(&self) -> usize {
        self.d_model * 2
    }
}

pub struct State {
    pub hs: Vec<Tensor>,
    pub prev_xs: Vec<[Tensor; D_CONV]>,
    pub pos: usize,
}

impl State {
    pub fn new(batch_size: usize, cfg: &Config, dtype: DType, device: &Device) -> Result<Self> {
        let mut hs = Vec::with_capacity(cfg.n_layer);
        let mut prev_xs = Vec::with_capacity(cfg.n_layer);
        for _i in 0..cfg.n_layer {
            let h = Tensor::zeros((batch_size, cfg.d_inner(), D_STATE), dtype, device)?;
            let x = Tensor::zeros((batch_size, cfg.d_inner()), dtype, device)?;
            hs.push(h);
            prev_xs.push([x.clone(), x.clone(), x.clone(), x.clone()]);
        }
        Ok(Self {
            hs,
            prev_xs,
            pos: 0,
        })
    }
}

#[derive(Clone, Debug)]
pub struct MambaBlock {
    in_proj: Linear,
    conv1d_bias: Tensor,
    conv1d_weights: [Tensor; D_CONV],
    x_proj: Linear,
    dt_proj: Linear,
    a_log: Tensor,
    d: Tensor,
    out_proj: Linear,
    dt_rank: usize,
    layer_index: usize,
    d_inner: usize,
}

impl MambaBlock {
    pub fn new(layer_index: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let d_inner = cfg.d_inner();
        let dt_rank = cfg.dt_rank();
        let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?;
        let x_proj = linear_no_bias(d_inner, dt_rank + D_STATE * 2, vb.pp("x_proj"))?;
        let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?;
        let a_log = vb.get((d_inner, D_STATE), "A_log")?;
        let d = vb.get(d_inner, "D")?;
        let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?;
        let conv1d_bias = vb.get(d_inner, "conv1d.bias")?;
        let conv1d_weight = vb.get((d_inner, 1, D_CONV), "conv1d.weight")?;
        let conv1d_weights = [
            conv1d_weight.i((.., 0, 0))?,
            conv1d_weight.i((.., 0, 1))?,
            conv1d_weight.i((.., 0, 2))?,
            conv1d_weight.i((.., 0, 3))?,
        ];
        Ok(Self {
            in_proj,
            conv1d_bias,
            conv1d_weights,
            x_proj,
            dt_proj,
            a_log,
            d,
            out_proj,
            dt_rank,
            layer_index,
            d_inner,
        })
    }

    pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
        let (b_sz, _dim) = xs.dims2()?;
        let li = self.layer_index;
        let mut xs = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?;
        let proj_for_silu = xs.remove(1);
        state.prev_xs[li][state.pos % D_CONV] = xs.remove(0);
        let mut proj_for_conv = self.conv1d_bias.broadcast_as((b_sz, self.d_inner))?;
        for d_c in 0..D_CONV {
            proj_for_conv = (proj_for_conv
                + self.conv1d_weights[d_c]
                    .broadcast_mul(&state.prev_xs[li][(d_c + 1 + state.pos) % D_CONV])?)?;
        }
        let proj_for_conv = candle_nn::ops::silu(&proj_for_conv)?;
        // SSM + Selection, we're doing inference here so only need the last step of
        // the sequence.
        // Algorithm 3.2 on page 6, https://arxiv.org/pdf/2312.00752.pdf

        let x_proj = self.x_proj.forward(&proj_for_conv)?;
        let delta = x_proj.narrow(D::Minus1, 0, self.dt_rank)?.contiguous()?;
        let b = x_proj.narrow(D::Minus1, self.dt_rank, D_STATE)?;
        let c = x_proj.narrow(D::Minus1, self.dt_rank + D_STATE, D_STATE)?;

        let delta = delta.apply(&self.dt_proj)?;
        // softplus
        let delta = (delta.exp()? + 1.)?.log()?;
        let a = self.a_log.to_dtype(delta.dtype())?.exp()?.neg()?;
        let d = self.d.to_dtype(delta.dtype())?;

        // Selective scan part
        // Eqn (2a), page 3, h_t = Ab h_{t-1} + Bb x_t
        let delta = delta
            .unsqueeze(D::Minus1)?
            .broadcast_as((b_sz, self.d_inner, D_STATE))?;
        let a = a.broadcast_as((b_sz, self.d_inner, D_STATE))?;
        let b = b.broadcast_as((b_sz, self.d_inner, D_STATE))?;
        let proj_for_conv_b =
            proj_for_conv
                .unsqueeze(D::Minus1)?
                .broadcast_as((b_sz, self.d_inner, D_STATE))?;
        state.hs[li] = ((&state.hs[li] * (&delta * &a)?.exp()?)? + &delta * &b * &proj_for_conv_b)?;
        let ss = (state.hs[li]
            .matmul(&c.unsqueeze(D::Minus1)?)?
            .squeeze(D::Minus1)?
            + proj_for_conv.broadcast_mul(&d)?)?;

        let ys = (ss * candle_nn::ops::silu(&proj_for_silu))?;
        ys.apply(&self.out_proj)
    }
}

#[derive(Clone, Debug)]
pub struct ResidualBlock {
    mixer: MambaBlock,
    norm: RmsNorm,
}

impl ResidualBlock {
    pub fn new(layer_index: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?;
        let mixer = MambaBlock::new(layer_index, cfg, vb.pp("mixer"))?;
        Ok(Self { mixer, norm })
    }

    fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
        self.mixer.forward(&xs.apply(&self.norm)?, state)? + xs
    }
}

// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56
#[derive(Clone, Debug)]
pub struct Model {
    embedding: candle_nn::Embedding,
    layers: Vec<ResidualBlock>,
    norm_f: RmsNorm,
    lm_head: Linear,
    dtype: DType,
}

impl Model {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?;
        let mut layers = Vec::with_capacity(cfg.n_layer);
        let vb_l = vb.pp("layers");
        for layer_idx in 0..cfg.n_layer {
            let layer = ResidualBlock::new(layer_idx, cfg, vb_l.pp(layer_idx))?;
            layers.push(layer)
        }
        let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?;
        let lm_head = Linear::from_weights(embedding.embeddings().clone(), None);
        Ok(Self {
            embedding,
            layers,
            norm_f,
            lm_head,
            dtype: vb.dtype(),
        })
    }

    pub fn forward(&self, input_ids: &Tensor, state: &mut State) -> Result<Tensor> {
        let _b_size = input_ids.dims1()?;
        let mut xs = self.embedding.forward(input_ids)?;
        for layer in self.layers.iter() {
            xs = layer.forward(&xs, state)?
        }
        state.pos += 1;
        xs.apply(&self.norm_f)?.apply(&self.lm_head)
    }

    pub fn dtype(&self) -> DType {
        self.dtype
    }
}