1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
use super::with_tracing::{linear, Embedding, Linear};
use candle::{Result, Tensor};
use candle_nn::{layer_norm, LayerNorm, VarBuilder};

#[derive(Debug, Clone)]
pub struct Config {
    pub vocab_size: usize,
    pub decoder_vocab_size: Option<usize>,
    pub max_position_embeddings: usize,
    pub encoder_layers: usize,
    pub encoder_ffn_dim: usize,
    pub encoder_attention_heads: usize,
    pub decoder_layers: usize,
    pub decoder_ffn_dim: usize,
    pub decoder_attention_heads: usize,
    pub use_cache: bool,
    pub is_encoder_decoder: bool,
    pub activation_function: candle_nn::Activation,
    pub d_model: usize,
    pub decoder_start_token_id: u32,
    pub scale_embedding: bool,
    pub pad_token_id: u32,
    pub eos_token_id: u32,
    pub forced_eos_token_id: u32,
    pub share_encoder_decoder_embeddings: bool,
}

impl Config {
    // https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fr-en/blob/main/config.json
    pub fn opus_mt_tc_big_fr_en() -> Self {
        Self {
            activation_function: candle_nn::Activation::Relu,
            d_model: 1024,
            decoder_attention_heads: 16,
            decoder_ffn_dim: 4096,
            decoder_layers: 6,
            decoder_start_token_id: 53016,
            decoder_vocab_size: Some(53017),
            encoder_attention_heads: 16,
            encoder_ffn_dim: 4096,
            encoder_layers: 6,
            eos_token_id: 43311,
            forced_eos_token_id: 43311,
            is_encoder_decoder: true,
            max_position_embeddings: 1024,
            pad_token_id: 53016,
            scale_embedding: true,
            share_encoder_decoder_embeddings: true,
            use_cache: true,
            vocab_size: 53017,
        }
    }

    // https://huggingface.co/Helsinki-NLP/opus-mt-fr-en/blob/main/config.json
    pub fn opus_mt_fr_en() -> Self {
        Self {
            activation_function: candle_nn::Activation::Swish,
            d_model: 512,
            decoder_attention_heads: 8,
            decoder_ffn_dim: 2048,
            decoder_layers: 6,
            decoder_start_token_id: 59513,
            decoder_vocab_size: Some(59514),
            encoder_attention_heads: 8,
            encoder_ffn_dim: 2048,
            encoder_layers: 6,
            eos_token_id: 0,
            forced_eos_token_id: 0,
            is_encoder_decoder: true,
            max_position_embeddings: 512,
            pad_token_id: 59513,
            scale_embedding: true,
            share_encoder_decoder_embeddings: true,
            use_cache: true,
            vocab_size: 59514,
        }
    }
}

#[derive(Debug, Clone)]
struct SinusoidalPositionalEmbedding {
    emb: Embedding,
}

impl SinusoidalPositionalEmbedding {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let dev = vb.device();
        let dtype = vb.dtype();
        let num_positions = cfg.max_position_embeddings;
        let dim = cfg.d_model;
        let inv_freq: Vec<_> = (0..dim)
            .step_by(2)
            .map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
            .collect();
        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
        let t = Tensor::arange(0u32, num_positions as u32, dev)?
            .to_dtype(dtype)?
            .reshape((num_positions, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        let sin = freqs.sin()?;
        let cos = freqs.cos()?;
        let weights = Tensor::cat(&[&sin, &cos], 1)?.contiguous()?;
        let emb = Embedding::from_weights(weights)?;
        Ok(Self { emb })
    }

    fn forward(&self, input_ids: &Tensor, past_kv_len: usize) -> Result<Tensor> {
        let seq_len = input_ids.dim(1)?;
        Tensor::arange(
            past_kv_len as u32,
            (past_kv_len + seq_len) as u32,
            input_ids.device(),
        )?
        .apply(&self.emb)
    }
}

#[derive(Debug, Clone)]
struct Attention {
    q_proj: Linear,
    k_proj: Linear,
    v_proj: Linear,
    out_proj: Linear,
    scaling: f64,
    num_heads: usize,
    head_dim: usize,
    kv_cache: Option<(Tensor, Tensor)>,
    is_decoder: bool,
}

impl Attention {
    fn new(cfg: &Config, is_decoder: bool, vb: VarBuilder) -> Result<Self> {
        let num_heads = if is_decoder {
            cfg.decoder_attention_heads
        } else {
            cfg.encoder_attention_heads
        };
        let embed_dim = cfg.d_model;
        let head_dim = embed_dim / num_heads;
        let scaling = (head_dim as f64).powf(-0.5);
        let q_proj = linear(embed_dim, embed_dim, vb.pp("q_proj"))?;
        let k_proj = linear(embed_dim, embed_dim, vb.pp("k_proj"))?;
        let v_proj = linear(embed_dim, embed_dim, vb.pp("v_proj"))?;
        let out_proj = linear(embed_dim, embed_dim, vb.pp("out_proj"))?;
        Ok(Self {
            q_proj,
            k_proj,
            v_proj,
            out_proj,
            scaling,
            num_heads,
            head_dim,
            kv_cache: None,
            is_decoder,
        })
    }

    fn _shape(&self, tensor: &Tensor, bsz: usize) -> Result<Tensor> {
        tensor
            .reshape((bsz, (), self.num_heads, self.head_dim))?
            .transpose(1, 2)?
            .contiguous()
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        kv_states: Option<&Tensor>,
        attn_mask: Option<&Tensor>,
    ) -> Result<Tensor> {
        let (b_sz, tgt_len, _) = xs.dims3()?;
        let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
        let (key_states, value_states) = match kv_states {
            None => {
                let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
                let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
                if self.is_decoder {
                    let kv_states = match &self.kv_cache {
                        None => (key_states, value_states),
                        Some((p_key_states, p_value_states)) => {
                            let key_states = Tensor::cat(&[p_key_states, &key_states], 2)?;
                            let value_states = Tensor::cat(&[p_value_states, &value_states], 2)?;
                            (key_states, value_states)
                        }
                    };
                    self.kv_cache = Some(kv_states.clone());
                    kv_states
                } else {
                    (key_states, value_states)
                }
            }
            Some(kv_states) => {
                let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
                let value_states = self._shape(&kv_states.apply(&self.v_proj)?, b_sz)?;
                (key_states, value_states)
            }
        };
        let proj_shape = (b_sz * self.num_heads, (), self.head_dim);
        let query_states = self._shape(&query_states, b_sz)?.reshape(proj_shape)?;
        let key_states = key_states.reshape(proj_shape)?;
        let value_states = value_states.reshape(proj_shape)?;
        let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
        let attn_weights = match attn_mask {
            None => attn_weights,
            Some(attn_mask) => attn_weights.broadcast_add(attn_mask)?,
        };
        let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
        let attn_output = attn_probs.matmul(&value_states)?;
        attn_output
            .reshape((b_sz, self.num_heads, tgt_len, self.head_dim))?
            .transpose(1, 2)?
            .reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
            .apply(&self.out_proj)
    }

    fn reset_kv_cache(&mut self) {
        self.kv_cache = None
    }
}

#[derive(Debug, Clone)]
struct EncoderLayer {
    self_attn: Attention,
    self_attn_layer_norm: LayerNorm,
    activation_fn: candle_nn::Activation,
    fc1: Linear,
    fc2: Linear,
    final_layer_norm: LayerNorm,
}

impl EncoderLayer {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let self_attn = Attention::new(cfg, true, vb.pp("self_attn"))?;
        let self_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
        let fc1 = linear(cfg.d_model, cfg.encoder_ffn_dim, vb.pp("fc1"))?;
        let fc2 = linear(cfg.encoder_ffn_dim, cfg.d_model, vb.pp("fc2"))?;
        let final_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("final_layer_norm"))?;
        Ok(Self {
            self_attn,
            self_attn_layer_norm,
            activation_fn: cfg.activation_function,
            fc1,
            fc2,
            final_layer_norm,
        })
    }

    fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
        let residual = xs;
        let xs = (self.self_attn.forward(xs, None, None)? + residual)?
            .apply(&self.self_attn_layer_norm)?;
        let residual = &xs;
        let xs = xs
            .apply(&self.fc1)?
            .apply(&self.activation_fn)?
            .apply(&self.fc2)?;
        (xs + residual)?.apply(&self.final_layer_norm)
    }

    fn reset_kv_cache(&mut self) {
        self.self_attn.reset_kv_cache()
    }
}

#[derive(Debug, Clone)]
struct DecoderLayer {
    self_attn: Attention,
    self_attn_layer_norm: LayerNorm,
    activation_fn: candle_nn::Activation,
    encoder_attn: Attention,
    encoder_attn_layer_norm: LayerNorm,
    fc1: Linear,
    fc2: Linear,
    final_layer_norm: LayerNorm,
}

impl DecoderLayer {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let self_attn = Attention::new(cfg, true, vb.pp("self_attn"))?;
        let self_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
        let encoder_attn = Attention::new(cfg, true, vb.pp("encoder_attn"))?;
        let encoder_attn_layer_norm =
            layer_norm(cfg.d_model, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
        let fc1 = linear(cfg.d_model, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
        let fc2 = linear(cfg.decoder_ffn_dim, cfg.d_model, vb.pp("fc2"))?;
        let final_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("final_layer_norm"))?;
        Ok(Self {
            self_attn,
            self_attn_layer_norm,
            activation_fn: cfg.activation_function,
            encoder_attn,
            encoder_attn_layer_norm,
            fc1,
            fc2,
            final_layer_norm,
        })
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        encoder_xs: Option<&Tensor>,
        attn_mask: &Tensor,
    ) -> Result<Tensor> {
        let residual = xs;
        let xs = (self.self_attn.forward(xs, None, Some(attn_mask))? + residual)?
            .apply(&self.self_attn_layer_norm)?;
        let xs = match encoder_xs {
            None => xs,
            Some(encoder_xs) => {
                let residual = &xs;
                let xs = self.encoder_attn.forward(&xs, Some(encoder_xs), None)?;
                (residual + xs)?.apply(&self.encoder_attn_layer_norm)?
            }
        };
        let residual = &xs;
        let xs = xs
            .apply(&self.fc1)?
            .apply(&self.activation_fn)?
            .apply(&self.fc2)?;
        let xs = (xs + residual)?.apply(&self.final_layer_norm)?;
        Ok(xs)
    }

    fn reset_kv_cache(&mut self) {
        self.self_attn.reset_kv_cache();
        self.encoder_attn.reset_kv_cache()
    }
}

#[derive(Debug, Clone)]
pub struct Encoder {
    embed_tokens: Embedding,
    embed_positions: SinusoidalPositionalEmbedding,
    layers: Vec<EncoderLayer>,
    embed_scale: Option<f64>,
}

impl Encoder {
    fn new(cfg: &Config, embed_tokens: &Embedding, vb: VarBuilder) -> Result<Self> {
        let embed_positions = SinusoidalPositionalEmbedding::new(cfg, vb.pp("embed_positions"))?;
        let mut layers = Vec::with_capacity(cfg.encoder_layers);
        let vb_l = vb.pp("layers");
        for idx in 0..cfg.encoder_layers {
            let layer = EncoderLayer::new(cfg, vb_l.pp(idx))?;
            layers.push(layer)
        }
        let embed_scale = if cfg.scale_embedding {
            Some((cfg.d_model as f64).sqrt())
        } else {
            None
        };
        Ok(Self {
            embed_tokens: embed_tokens.clone(),
            embed_positions,
            layers,
            embed_scale,
        })
    }

    pub fn forward(&mut self, xs: &Tensor, past_kv_len: usize) -> Result<Tensor> {
        let xs = xs.apply(&self.embed_tokens)?;
        let xs = match self.embed_scale {
            None => xs,
            Some(scale) => (xs * scale)?,
        };
        let embed_pos = self
            .embed_positions
            .forward(&xs, past_kv_len)?
            .unsqueeze(0)?;
        let mut xs = xs.broadcast_add(&embed_pos)?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs)?
        }
        Ok(xs)
    }

    pub fn reset_kv_cache(&mut self) {
        for layer in self.layers.iter_mut() {
            layer.reset_kv_cache()
        }
    }
}

#[derive(Debug, Clone)]
pub struct Decoder {
    embed_tokens: Embedding,
    embed_positions: SinusoidalPositionalEmbedding,
    layers: Vec<DecoderLayer>,
    embed_scale: Option<f64>,
}

impl Decoder {
    fn new(cfg: &Config, embed_tokens: &Embedding, vb: VarBuilder) -> Result<Self> {
        let embed_positions = SinusoidalPositionalEmbedding::new(cfg, vb.pp("embed_positions"))?;
        let mut layers = Vec::with_capacity(cfg.decoder_layers);
        let vb_l = vb.pp("layers");
        for idx in 0..cfg.decoder_layers {
            let layer = DecoderLayer::new(cfg, vb_l.pp(idx))?;
            layers.push(layer)
        }
        let embed_scale = if cfg.scale_embedding {
            Some((cfg.d_model as f64).sqrt())
        } else {
            None
        };
        Ok(Self {
            embed_tokens: embed_tokens.clone(),
            embed_positions,
            layers,
            embed_scale,
        })
    }

    pub fn forward(
        &mut self,
        xs: &Tensor,
        encoder_xs: Option<&Tensor>,
        past_kv_len: usize,
        attn_mask: &Tensor,
    ) -> Result<Tensor> {
        let xs = xs.apply(&self.embed_tokens)?;
        let xs = match self.embed_scale {
            None => xs,
            Some(scale) => (xs * scale)?,
        };
        let embed_pos = self
            .embed_positions
            .forward(&xs, past_kv_len)?
            .unsqueeze(0)?;
        let mut xs = xs.broadcast_add(&embed_pos)?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, encoder_xs, attn_mask)?;
        }
        Ok(xs)
    }

    pub fn reset_kv_cache(&mut self) {
        for layer in self.layers.iter_mut() {
            layer.reset_kv_cache()
        }
    }
}

#[derive(Debug, Clone)]
struct Model {
    shared: Embedding,
    encoder: Encoder,
    decoder: Decoder,
}

impl Model {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let shared = Embedding::new(cfg.vocab_size, cfg.d_model, vb.pp("shared"))?;
        let encoder = Encoder::new(cfg, &shared, vb.pp("encoder"))?;
        let decoder = Decoder::new(cfg, &shared, vb.pp("decoder"))?;
        Ok(Self {
            shared,
            encoder,
            decoder,
        })
    }

    fn reset_kv_cache(&mut self) {
        self.encoder.reset_kv_cache();
        self.decoder.reset_kv_cache();
    }
}

#[derive(Debug, Clone)]
pub struct MTModel {
    model: Model,
    lm_head: Linear,
    final_logits_bias: Tensor,
}

impl MTModel {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let target_vocab_size = cfg.decoder_vocab_size.unwrap_or(cfg.vocab_size);
        let final_logits_bias = vb.get((1, target_vocab_size), "final_logits_bias")?;
        let model = Model::new(cfg, vb.pp("model"))?;
        let lm_head = Linear::from_weights(model.shared.embeddings().clone(), None);
        Ok(Self {
            model,
            lm_head,
            final_logits_bias,
        })
    }

    pub fn encoder(&mut self) -> &mut Encoder {
        &mut self.model.encoder
    }

    pub fn decoder(&mut self) -> &mut Decoder {
        &mut self.model.decoder
    }

    pub fn decode(
        &mut self,
        xs: &Tensor,
        encoder_xs: &Tensor,
        past_kv_len: usize,
    ) -> Result<Tensor> {
        let seq_len = xs.dim(1)?;
        let mask: Vec<_> = (0..seq_len)
            .flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
            .collect();
        let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;
        self.model
            .decoder
            .forward(xs, Some(encoder_xs), past_kv_len, &mask)?
            .apply(&self.lm_head)?
            .broadcast_add(&self.final_logits_bias)
    }

    pub fn reset_kv_cache(&mut self) {
        self.model.reset_kv_cache();
    }
}