1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// This implementation is based on:
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py
use crate::models::with_tracing::{linear_no_bias as linear, Linear, RmsNorm};
use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
use std::sync::Arc;

// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/config.json
#[derive(Debug, Clone, serde::Deserialize)]
pub struct Config {
    pub vocab_size: usize,
    pub hidden_act: candle_nn::Activation,
    pub hidden_size: usize,
    pub intermediate_size: usize,
    pub num_hidden_layers: usize,
    pub num_attention_heads: usize,
    pub num_key_value_heads: usize,
    pub rms_norm_eps: f64,
    pub rope_theta: f64,
    pub bos_token_id: Option<u32>,
    pub eos_token_id: Option<u32>,
    pub rope_scaling: Option<String>,
    pub max_position_embeddings: usize,
}

impl Config {
    fn head_dim(&self) -> usize {
        self.hidden_size / self.num_attention_heads
    }
}

#[derive(Debug, Clone)]
struct RotaryEmbedding {
    sin: Tensor,
    cos: Tensor,
}

impl RotaryEmbedding {
    fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
        let dim = cfg.head_dim();
        let max_seq_len = cfg.max_position_embeddings;
        let inv_freq: Vec<_> = (0..dim)
            .step_by(2)
            .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
            .collect();
        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
        let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
            .to_dtype(dtype)?
            .reshape((max_seq_len, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        Ok(Self {
            sin: freqs.sin()?,
            cos: freqs.cos()?,
        })
    }

    fn apply_rotary_emb_qkv(
        &self,
        q: &Tensor,
        k: &Tensor,
        seqlen_offset: usize,
    ) -> Result<(Tensor, Tensor)> {
        let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
        let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
        let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
        let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
        let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
        Ok((q_embed, k_embed))
    }
}

#[derive(Debug, Clone)]
struct Attention {
    qkv_proj: Linear,
    o_proj: Linear,
    num_heads: usize,
    num_kv_heads: usize,
    num_kv_groups: usize,
    head_dim: usize,
    rotary_emb: Arc<RotaryEmbedding>,
    kv_cache: Option<(Tensor, Tensor)>,
}

impl Attention {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let num_heads = cfg.num_attention_heads;
        let num_kv_heads = cfg.num_key_value_heads;
        let head_dim = cfg.head_dim();
        let op_size = num_heads * head_dim + 2 * num_kv_heads * head_dim;
        let qkv_proj = linear(cfg.hidden_size, op_size, vb.pp("qkv_proj"))?;
        let o_proj = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("o_proj"))?;
        Ok(Self {
            qkv_proj,
            o_proj,
            rotary_emb,
            kv_cache: None,
            num_heads,
            num_kv_heads,
            num_kv_groups: num_heads / num_kv_heads,
            head_dim,
        })
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        let (b_sz, q_len, _) = xs.dims3()?;

        let qkv = self.qkv_proj.forward(xs)?;
        let query_pos = self.num_heads * self.head_dim;
        let query_states = qkv.narrow(D::Minus1, 0, query_pos)?;
        let key_states = qkv.narrow(D::Minus1, query_pos, self.num_kv_heads * self.head_dim)?;
        let value_states = qkv.narrow(
            D::Minus1,
            query_pos + self.num_kv_heads * self.head_dim,
            self.num_kv_heads * self.head_dim,
        )?;

        let query_states = query_states
            .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
            .transpose(1, 2)?;
        let key_states = key_states
            .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
            .transpose(1, 2)?;
        let value_states = value_states
            .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
            .transpose(1, 2)?;

        let (query_states, key_states) =
            self.rotary_emb
                .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;

        let (key_states, value_states) = match &self.kv_cache {
            None => (key_states, value_states),
            Some((prev_k, prev_v)) => {
                let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
                let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
                (key_states, value_states)
            }
        };
        self.kv_cache = Some((key_states.clone(), value_states.clone()));

        let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
        let value_states =
            crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;

        let attn_output = {
            let scale = 1f64 / f64::sqrt(self.head_dim as f64);
            let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;

            let attn_weights = match attention_mask {
                None => attn_weights,
                Some(mask) => attn_weights.broadcast_add(mask)?,
            };
            let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
            attn_weights.matmul(&value_states)?
        };
        attn_output
            .transpose(1, 2)?
            .reshape((b_sz, q_len, ()))?
            .apply(&self.o_proj)
    }

    fn clear_kv_cache(&mut self) {
        self.kv_cache = None
    }
}

#[derive(Debug, Clone)]
struct Mlp {
    gate_up_proj: Linear,
    down_proj: Linear,
    act_fn: candle_nn::Activation,
    i_size: usize,
}

impl Mlp {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_size = cfg.hidden_size;
        let i_size = cfg.intermediate_size;
        let gate_up_proj = linear(hidden_size, 2 * i_size, vb.pp("gate_up_proj"))?;
        let down_proj = linear(i_size, hidden_size, vb.pp("down_proj"))?;
        Ok(Self {
            gate_up_proj,
            down_proj,
            act_fn: cfg.hidden_act,
            i_size,
        })
    }
}

impl Module for Mlp {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let up_states = xs.apply(&self.gate_up_proj)?;
        let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
        let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
        let up_states = (up_states * gate.apply(&self.act_fn))?;
        up_states.apply(&self.down_proj)
    }
}

#[derive(Debug, Clone)]
struct DecoderLayer {
    self_attn: Attention,
    mlp: Mlp,
    input_layernorm: RmsNorm,
    post_attention_layernorm: RmsNorm,
}

impl DecoderLayer {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
        let mlp = Mlp::new(cfg, vb.pp("mlp"))?;
        let input_layernorm =
            RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
        let post_attention_layernorm = RmsNorm::new(
            cfg.hidden_size,
            cfg.rms_norm_eps,
            vb.pp("post_attention_layernorm"),
        )?;
        Ok(Self {
            self_attn,
            mlp,
            input_layernorm,
            post_attention_layernorm,
        })
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        let residual = xs;
        let xs = self.input_layernorm.forward(xs)?;
        let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
        let xs = (xs + residual)?;
        let residual = &xs;
        let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
        residual + xs
    }

    fn clear_kv_cache(&mut self) {
        self.self_attn.clear_kv_cache()
    }
}

#[derive(Debug, Clone)]
pub struct Model {
    embed_tokens: candle_nn::Embedding,
    layers: Vec<DecoderLayer>,
    norm: RmsNorm,
    lm_head: Linear,
    device: Device,
    dtype: DType,
}

impl Model {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb_m = vb.pp("model");
        let embed_tokens =
            candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
        let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
        let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
        let vb_l = vb_m.pp("layers");
        for layer_idx in 0..cfg.num_hidden_layers {
            let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
            layers.push(layer)
        }
        let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
        let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
        Ok(Self {
            embed_tokens,
            layers,
            norm,
            lm_head,
            device: vb.device().clone(),
            dtype: vb.dtype(),
        })
    }

    fn prepare_decoder_attention_mask(
        &self,
        b_size: usize,
        tgt_len: usize,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        let mask: Vec<_> = (0..tgt_len)
            .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
            .collect();
        let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
        let mask = if seqlen_offset > 0 {
            let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
            Tensor::cat(&[&mask0, &mask], D::Minus1)?
        } else {
            mask
        };
        mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
            .to_dtype(self.dtype)
    }

    pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
        let (b_size, seq_len) = input_ids.dims2()?;
        let attention_mask = if seq_len <= 1 {
            None
        } else {
            let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
            Some(mask)
        };
        let mut xs = self.embed_tokens.forward(input_ids)?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
        }
        xs.narrow(1, seq_len - 1, 1)?
            .apply(&self.norm)?
            .apply(&self.lm_head)
    }

    pub fn clear_kv_cache(&mut self) {
        for layer in self.layers.iter_mut() {
            layer.clear_kv_cache()
        }
    }
}