1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use crate::quantized_nn::{linear_b, Embedding, Linear, RmsNorm};
pub use crate::quantized_var_builder::VarBuilder;

use crate::models::metavoice::repeat_interleave;
use candle::{Module, Result, Tensor, D};

pub mod transformer {
    use super::*;

    type Config = crate::models::metavoice::transformer::Config;

    #[derive(Debug, Clone)]
    struct FeedForward {
        w1: Linear,
        w2: Linear,
        w3: Linear,
        span: tracing::Span,
    }

    impl FeedForward {
        fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
            let i_size = cfg.intermediate_size();
            let w1 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w1"))?;
            let w2 = linear_b(i_size, cfg.dim, false, vb.pp("w2"))?;
            let w3 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w3"))?;
            Ok(Self {
                w1,
                w2,
                w3,
                span: tracing::span!(tracing::Level::TRACE, "feed-forward"),
            })
        }
    }

    impl Module for FeedForward {
        fn forward(&self, xs: &Tensor) -> Result<Tensor> {
            let _enter = self.span.enter();
            let swiglu = (candle_nn::ops::silu(&xs.apply(&self.w1)?)? * xs.apply(&self.w3))?;
            swiglu.apply(&self.w2)
        }
    }

    #[derive(Debug, Clone)]
    struct Attention {
        wqkv: Linear,
        wo: Linear,
        dim: usize,
        kv_size: usize,
        n_local_heads: usize,
        head_dim: usize,
        n_head: usize,
        kv_cache: Option<(Tensor, Tensor)>,
        span: tracing::Span,
    }

    impl Attention {
        fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
            let n_local_heads = cfg.n_local_heads();
            let head_dim = cfg.head_dim();
            let total_head_dim = (cfg.n_head + 2 * n_local_heads) * head_dim;
            let wqkv = linear_b(cfg.dim, total_head_dim, false, vb.pp("wqkv"))?;
            let wo = linear_b(cfg.dim, cfg.dim, false, vb.pp("wo"))?;
            Ok(Self {
                wqkv,
                wo,
                dim: cfg.dim,
                kv_size: n_local_heads * head_dim,
                n_local_heads,
                head_dim,
                n_head: cfg.n_head,
                kv_cache: None,
                span: tracing::span!(tracing::Level::TRACE, "attention"),
            })
        }

        fn forward(&mut self, xs: &Tensor, _pos: usize, mask: &Tensor) -> Result<Tensor> {
            let _enter = self.span.enter();
            let (b_sz, seqlen, _) = xs.dims3()?;

            let qkv = xs.apply(&self.wqkv)?;
            let q = qkv.narrow(D::Minus1, 0, self.dim)?;
            let k = qkv.narrow(D::Minus1, self.dim, self.kv_size)?;
            let v = qkv.narrow(D::Minus1, self.dim + self.kv_size, self.kv_size)?;
            let q = q
                .reshape((b_sz, seqlen, self.n_head, self.head_dim))?
                .transpose(1, 2)?
                .contiguous()?;
            let k = k
                .reshape((b_sz, seqlen, self.n_local_heads, self.head_dim))?
                .transpose(1, 2)?;
            let v = v
                .reshape((b_sz, seqlen, self.n_local_heads, self.head_dim))?
                .transpose(1, 2)?;

            let (k, v) = match &self.kv_cache {
                None => (k, v),
                Some((prev_k, prev_v)) => {
                    let k = Tensor::cat(&[prev_k, &k], 2)?;
                    let v = Tensor::cat(&[prev_v, &v], 2)?;
                    (k, v)
                }
            };
            self.kv_cache = Some((k.clone(), v.clone()));

            let k = repeat_interleave(&k, self.n_head / self.n_local_heads, 1)?;
            let v = repeat_interleave(&v, self.n_head / self.n_local_heads, 1)?;

            let scale = 1f64 / f64::sqrt(self.head_dim as f64);
            let attn_weights = (q.matmul(&k.transpose(2, 3)?)? * scale)?;

            let attn_weights = attn_weights.broadcast_add(mask)?;
            let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
            let attn_output = attn_weights.matmul(&v)?;
            attn_output
                .transpose(1, 2)?
                .reshape((b_sz, seqlen, self.dim))?
                .apply(&self.wo)
        }

        fn clear_kv_cache(&mut self) {
            self.kv_cache = None
        }
    }

    #[derive(Debug, Clone)]
    struct Block {
        attention: Attention,
        feed_forward: FeedForward,
        ffn_norm: RmsNorm,
        attention_norm: RmsNorm,
        span: tracing::Span,
    }

    impl Block {
        fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
            let attention = Attention::new(cfg, vb.pp("attention"))?;
            let feed_forward = FeedForward::new(cfg, vb.pp("feed_forward"))?;
            let ffn_norm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("ffn_norm"))?;
            let attention_norm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("attention_norm"))?;
            Ok(Self {
                attention,
                feed_forward,
                ffn_norm,
                attention_norm,
                span: tracing::span!(tracing::Level::TRACE, "block"),
            })
        }

        fn forward(&mut self, xs: &Tensor, pos: usize, mask: &Tensor) -> Result<Tensor> {
            let _enter = self.span.enter();
            let hs = xs.apply(&self.attention_norm)?;
            let hs = (xs + self.attention.forward(&hs, pos, mask))?;
            &hs + hs.apply(&self.ffn_norm)?.apply(&self.feed_forward)
        }

        fn clear_kv_cache(&mut self) {
            self.attention.clear_kv_cache()
        }
    }

    #[derive(Debug, Clone)]
    pub struct Model {
        tok_embeddings: Embedding,
        pos_embeddings: Embedding,
        speaker_cond_pos: Linear,
        layers: Vec<Block>,
        norm: RmsNorm,
        output: Linear,
        spk_cond_mask: Tensor,
        span: tracing::Span,
    }

    impl Model {
        pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
            let tok_embeddings = Embedding::new(cfg.vocab_size, cfg.dim, vb.pp("tok_embeddings"))?;
            let pos_embeddings = Embedding::new(cfg.block_size, cfg.dim, vb.pp("pos_embeddings"))?;
            let speaker_cond_pos = linear_b(
                cfg.speaker_emb_dim,
                cfg.dim,
                false,
                vb.pp("speaker_cond_pos"),
            )?;
            let mut layers = Vec::with_capacity(cfg.n_layer);
            let vb_l = vb.pp("layers");
            for layer_idx in 0..cfg.n_layer {
                let layer = Block::new(cfg, vb_l.pp(layer_idx))?;
                layers.push(layer)
            }
            let norm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("norm"))?;
            let output = linear_b(cfg.dim, cfg.vocab_size, false, vb.pp("output"))?;
            let spk_cond_mask = Tensor::cat(
                &[
                    Tensor::ones((1, 1, cfg.dim), candle::DType::F32, vb.device())?,
                    Tensor::zeros((1, 1, cfg.dim), candle::DType::F32, vb.device())?,
                ],
                0,
            )?;
            Ok(Self {
                tok_embeddings,
                pos_embeddings,
                speaker_cond_pos,
                layers,
                norm,
                output,
                spk_cond_mask,
                span: tracing::span!(tracing::Level::TRACE, "qtransformer"),
            })
        }

        pub fn clear_kv_cache(&mut self) {
            for layer in self.layers.iter_mut() {
                layer.clear_kv_cache()
            }
        }

        pub fn forward(&mut self, xs: &Tensor, spk_emb: &Tensor, pos: usize) -> Result<Tensor> {
            let _enter = self.span.enter();
            let (_b_sz, seqlen) = xs.dims2()?;
            let mask: Vec<_> = (0..seqlen)
                .flat_map(|i| (0..seqlen).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
                .collect();
            let mask = Tensor::from_slice(&mask, (1, 1, seqlen, seqlen), xs.device())?;
            let input_pos = Tensor::arange(pos as u32, (pos + seqlen) as u32, xs.device())?;
            let tok_embeddings = xs.apply(&self.tok_embeddings)?;
            let pos_embeddings = input_pos.apply(&self.pos_embeddings)?;
            let mut xs = tok_embeddings
                .broadcast_add(&pos_embeddings)?
                .broadcast_add(
                    &spk_emb
                        .apply(&self.speaker_cond_pos)?
                        .broadcast_mul(&self.spk_cond_mask)?,
                )?;
            let mask = mask.to_dtype(xs.dtype())?;
            for layer in self.layers.iter_mut() {
                xs = layer.forward(&xs, pos, &mask)?
            }
            xs.narrow(1, seqlen - 1, 1)?
                .contiguous()?
                .apply(&self.norm)?
                .apply(&self.output)
        }
    }
}