1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use crate::quantized_nn::{layer_norm, linear, Linear};
pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::Activation;

pub use crate::models::mixformer::Config;

const MAX_SEQ_LEN: usize = 4096;

#[derive(Debug, Clone)]
struct Embedding {
    wte: crate::quantized_nn::Embedding,
}

impl Embedding {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let wte = crate::quantized_nn::Embedding::new(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?;
        Ok(Self { wte })
    }
}

impl Module for Embedding {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        self.wte.forward(xs)
    }
}

fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
    let mask: Vec<_> = (0..size)
        .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
        .collect();
    Tensor::from_slice(&mask, (size, size), device)
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
    let shape = mask.shape();
    let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
    let m = mask.where_cond(&on_true, on_false)?;
    Ok(m)
}

#[derive(Debug, Clone)]
struct RotaryEmbedding {
    sin: Tensor,
    cos: Tensor,
}

impl RotaryEmbedding {
    fn new(dim: usize, max_seq_len: usize, dev: &Device) -> Result<Self> {
        let inv_freq: Vec<_> = (0..dim)
            .step_by(2)
            .map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
            .collect();
        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
        let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
            .to_dtype(DType::F32)?
            .reshape((max_seq_len, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        Ok(Self {
            sin: freqs.sin()?,
            cos: freqs.cos()?,
        })
    }

    fn apply_rotary_emb_qkv(
        &self,
        qkv: &Tensor,
        seqlen_offset: usize,
    ) -> Result<(Tensor, Tensor, Tensor)> {
        let (_b_size, seqlen, three, _, _headdim) = qkv.dims5()?;
        if three != 3 {
            candle::bail!("unexpected shape for qkv {:?}", qkv.shape())
        }
        let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
        let rotary_dim = rotary_dim * 2;
        let q_rot = qkv.i((.., .., 0, .., ..rotary_dim))?;
        let q_pass = qkv.i((.., .., 0, .., rotary_dim..))?;
        let k_rot = qkv.i((.., .., 1, .., ..rotary_dim))?;
        let k_pass = qkv.i((.., .., 1, .., rotary_dim..))?;
        let q12 = q_rot.chunk(2, D::Minus1)?;
        let k12 = k_rot.chunk(2, D::Minus1)?;
        let (q1, q2) = (&q12[0], &q12[1]);
        let (k1, k2) = (&k12[0], &k12[1]);
        let c = self.cos.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
        let s = self.sin.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
        let q_rot = Tensor::cat(
            &[
                (q1.broadcast_mul(&c)? - q2.broadcast_mul(&s)?)?,
                (q1.broadcast_mul(&s)? + q2.broadcast_mul(&c)?)?,
            ],
            D::Minus1,
        )?;
        let k_rot = Tensor::cat(
            &[
                (k1.broadcast_mul(&c)? - k2.broadcast_mul(&s)?)?,
                (k1.broadcast_mul(&s)? + k2.broadcast_mul(&c)?)?,
            ],
            D::Minus1,
        )?;
        let q = Tensor::cat(&[&q_rot, &q_pass], D::Minus1)?;
        let k = Tensor::cat(&[&k_rot, &k_pass], D::Minus1)?;
        let v = qkv.i((.., .., 2))?;
        Ok((q, k, v))
    }
}

#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
    fc1: Linear,
    fc2: Linear,
    act: Activation,
}

impl MLP {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let n_inner = cfg.n_inner.unwrap_or(4 * cfg.n_embd);
        let fc1 = linear(cfg.n_embd, n_inner, vb.pp("fc1"))?;
        let fc2 = linear(n_inner, cfg.n_embd, vb.pp("fc2"))?;
        Ok(Self {
            fc1,
            fc2,
            act: cfg.activation_function,
        })
    }
}

impl Module for MLP {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
    }
}

#[derive(Debug, Clone)]
struct CausalLMHead {
    ln: candle_nn::LayerNorm,
    linear: Linear,
}

impl CausalLMHead {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let ln = layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
        let linear = linear(cfg.n_embd, cfg.vocab_size, vb.pp("linear"))?;
        Ok(Self { ln, linear })
    }
}

impl Module for CausalLMHead {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        xs.apply(&self.ln)?
            .apply(&self.linear)?
            .to_dtype(DType::F32)
    }
}

#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MHA {
    wqkv: Linear,
    out_proj: Linear,
    rotary_emb: RotaryEmbedding,
    kv_cache: Option<(Tensor, Tensor)>,
    head_dim: usize,
    n_head: usize,
    softmax_scale: f64,
    span: tracing::Span,
}

impl MHA {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let head_dim = cfg.n_embd / cfg.n_head;
        let op_size = cfg.n_embd;
        let wqkv = linear(cfg.n_embd, 3 * op_size, vb.pp("Wqkv"))?;
        let out_proj = linear(op_size, cfg.n_embd, vb.pp("out_proj"))?;
        let rotary_emb = RotaryEmbedding::new(cfg.rotary_dim, MAX_SEQ_LEN, vb.device())?;
        let softmax_scale = 1f64 / (head_dim as f64).sqrt();
        Ok(Self {
            wqkv,
            out_proj,
            head_dim,
            n_head: cfg.n_head,
            kv_cache: None,
            rotary_emb,
            softmax_scale,
            span: tracing::span!(tracing::Level::TRACE, "mha"),
        })
    }

    fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
        let _enter = self.span.enter();
        let (b_size, seq_len, _n_embd) = xs.dims3()?;
        let qkv = self
            .wqkv
            .forward(xs)?
            .reshape((b_size, seq_len, 3, (), self.head_dim))?;
        let seqlen_offset = match &self.kv_cache {
            None => 0,
            Some((prev_k, _)) => prev_k.dim(1)?,
        };
        // In the python implementation, a single tensor is returned with the third axis of size 3.
        let (q, k, v) = self.rotary_emb.apply_rotary_emb_qkv(&qkv, seqlen_offset)?;
        let (k, v) = match &self.kv_cache {
            None => (k, v),
            Some((prev_k, prev_v)) => {
                let k = Tensor::cat(&[prev_k, &k], 1)?;
                let v = Tensor::cat(&[prev_v, &v], 1)?;
                (k, v)
            }
        };
        self.kv_cache = Some((k.clone(), v.clone()));
        // scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
        let q = q.transpose(1, 2)?.flatten_to(1)?; // b*h, t, d
        let k = k.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
        let v = v.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
        let attn_weights = (q.matmul(&k.t()?)? * self.softmax_scale)?; // b*h, t, s

        // causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1)
        // scores = scores + causal_mask.to(dtype=scores.dtype)
        let attn_weights = match mask {
            None => attn_weights,
            Some(mask) => masked_fill(
                &attn_weights,
                &mask.broadcast_left(b_size * self.n_head)?,
                f32::NEG_INFINITY,
            )?,
        };
        let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;

        // output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        // attn_weights: b*h,t,s, v: b*h,s,d
        let attn_output = attn_weights.matmul(&v)?;
        // b*h,t,d
        let attn_output = attn_output
            .reshape((b_size, (), seq_len, self.head_dim))?
            .transpose(1, 2)?
            .flatten_from(D::Minus2)?;
        attn_output.apply(&self.out_proj)
    }

    fn clear_kv_cache(&mut self) {
        self.kv_cache = None
    }
}

#[derive(Debug, Clone)]
struct ParallelBlock {
    ln: candle_nn::LayerNorm,
    mixer: MHA,
    mlp: MLP,
    span: tracing::Span,
}

impl ParallelBlock {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let ln = layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
        let mixer = MHA::new(cfg, vb.pp("mixer"))?;
        let mlp = MLP::new(cfg, vb.pp("mlp"))?;
        Ok(Self {
            ln,
            mixer,
            mlp,
            span: tracing::span!(tracing::Level::TRACE, "block"),
        })
    }

    fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
        let _enter = self.span.enter();
        let residual = xs;
        let xs = xs.apply(&self.ln)?;
        let attn_outputs = self.mixer.forward(&xs, mask)?;
        let feed_forward_hidden_states = self.mlp.forward(&xs)?;
        attn_outputs + feed_forward_hidden_states + residual
    }

    fn clear_kv_cache(&mut self) {
        self.mixer.clear_kv_cache()
    }
}

#[derive(Debug, Clone)]
pub struct MixFormerSequentialForCausalLM {
    embedding: Embedding,
    blocks: Vec<ParallelBlock>,
    head: CausalLMHead,
    span: tracing::Span,
}

impl MixFormerSequentialForCausalLM {
    pub fn new_v2(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb_head = vb.pp("lm_head");
        let vb = vb.pp("transformer");
        let embedding = Embedding::new(cfg, vb.pp("embd"))?;
        let mut blocks = Vec::new();
        for i in 0..cfg.n_layer {
            let block = ParallelBlock::new(cfg, vb.pp("h").pp(i))?;
            blocks.push(block)
        }
        let head = CausalLMHead::new(cfg, vb_head)?;
        Ok(Self {
            embedding,
            blocks,
            head,
            span: tracing::span!(tracing::Level::TRACE, "mixformer"),
        })
    }

    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb = vb.pp("layers");
        let embedding = Embedding::new(cfg, vb.pp(0))?;
        let mut blocks = Vec::new();
        for i in 0..cfg.n_layer {
            let block = ParallelBlock::new(cfg, vb.pp(i + 1))?;
            blocks.push(block);
        }
        let head = CausalLMHead::new(cfg, vb.pp(cfg.n_layer + 1))?;
        Ok(Self {
            embedding,
            blocks,
            head,
            span: tracing::span!(tracing::Level::TRACE, "mixformer"),
        })
    }

    pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        let (_b_size, seq_len) = xs.dims2()?;
        let mut xs = xs.apply(&self.embedding)?;
        let mask = if seq_len <= 1 {
            None
        } else {
            Some(get_mask(seq_len, xs.device())?)
        };
        for block in self.blocks.iter_mut() {
            xs = block.forward(&xs, mask.as_ref())?;
        }
        xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
    }

    pub fn forward_with_img(
        &mut self,
        bos_token: &Tensor,
        xs: &Tensor,
        img_embeds: &Tensor,
    ) -> Result<Tensor> {
        let _enter = self.span.enter();
        let xs = xs.apply(&self.embedding)?;
        let bos_token = bos_token.apply(&self.embedding)?;
        // Python implementation sequence order is <bos token embedding><img embedding><rest of text embedding>
        // https://github.com/vikhyat/moondream/blob/a9d788a20d1543fb1479edc54106e88cff7759d3/moondream/moondream.py#L43-L56
        let mut xs = Tensor::cat(&[bos_token, img_embeds.clone(), xs], 1)?;
        let (_b_size, seq_len, _embds) = xs.dims3()?;
        let mask = Some(get_mask(seq_len, xs.device())?);
        for block in self.blocks.iter_mut() {
            xs = block.forward(&xs, mask.as_ref())?
        }
        let xs = xs
            .narrow(1, seq_len - 1, 1)?
            .apply(&self.head)?
            .squeeze(1)?;
        Ok(xs)
    }

    pub fn clear_kv_cache(&mut self) {
        self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
    }
}