use crate::{
quantized_nn::{layer_norm, linear_no_bias as linear, Embedding, Linear},
quantized_var_builder::VarBuilder,
};
use candle::{IndexOp, Result, Tensor};
use candle_nn::{GroupNorm, LayerNorm, Module};
pub use crate::models::rwkv_v5::{Config, State, Tokenizer};
#[derive(Debug, Clone)]
struct SelfAttention {
key: Linear,
receptance: Linear,
value: Linear,
gate: Linear,
output: Linear,
ln_x: candle_nn::GroupNorm,
time_mix_x: Tensor,
time_mix_w: Tensor,
time_mix_key: Tensor,
time_mix_value: Tensor,
time_mix_receptance: Tensor,
time_decay: Tensor,
time_faaaa: Tensor,
time_mix_gate: Tensor,
time_decay_w1: Tensor,
time_decay_w2: Tensor,
time_mix_w1: Tensor,
time_mix_w2: Tensor,
layer_id: usize,
n_attn_heads: usize,
}
impl SelfAttention {
fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_size = cfg.hidden_size;
let attn_hidden_size = cfg.attention_hidden_size;
let key = linear(hidden_size, attn_hidden_size, vb.pp("key"))?;
let receptance = linear(hidden_size, attn_hidden_size, vb.pp("receptance"))?;
let value = linear(hidden_size, attn_hidden_size, vb.pp("value"))?;
let gate = linear(hidden_size, attn_hidden_size, vb.pp("gate"))?;
let output = linear(attn_hidden_size, hidden_size, vb.pp("output"))?;
let vb_x = vb.pp("ln_x");
let ln_x_weight = vb_x.get(hidden_size, "weight")?.dequantize(vb.device())?;
let ln_x_bias = vb_x.get(hidden_size, "bias")?.dequantize(vb.device())?;
let ln_x = GroupNorm::new(
ln_x_weight,
ln_x_bias,
hidden_size,
hidden_size / cfg.head_size,
1e-5,
)?;
let time_mix_x = vb
.get((1, 1, cfg.hidden_size), "time_mix_x")?
.dequantize(vb.device())?;
let time_mix_w = vb
.get((1, 1, cfg.hidden_size), "time_mix_w")?
.dequantize(vb.device())?;
let time_mix_key = vb
.get((1, 1, cfg.hidden_size), "time_mix_key")?
.dequantize(vb.device())?;
let time_mix_value = vb
.get((1, 1, cfg.hidden_size), "time_mix_value")?
.dequantize(vb.device())?;
let time_mix_receptance = vb
.get((1, 1, cfg.hidden_size), "time_mix_receptance")?
.dequantize(vb.device())?;
let n_attn_heads = cfg.hidden_size / cfg.head_size;
let time_decay = vb
.get((1, 1, cfg.hidden_size), "time_decay")?
.dequantize(vb.device())?;
let time_faaaa = vb
.get((n_attn_heads, cfg.head_size), "time_faaaa")?
.dequantize(vb.device())?;
let time_mix_gate = vb
.get((1, 1, cfg.hidden_size), "time_mix_gate")?
.dequantize(vb.device())?;
let time_decay_w1 = vb
.get((cfg.hidden_size, n_attn_heads * 2), "time_decay_w1")?
.dequantize(vb.device())?;
let time_decay_w2 = vb
.get((n_attn_heads * 2, cfg.hidden_size), "time_decay_w2")?
.dequantize(vb.device())?;
let time_mix_w1 = vb
.get((cfg.hidden_size, n_attn_heads * 5), "time_mix_w1")?
.dequantize(vb.device())?;
let time_mix_w2 = vb
.get((5, n_attn_heads, cfg.hidden_size), "time_mix_w2")?
.dequantize(vb.device())?;
Ok(Self {
key,
value,
receptance,
gate,
output,
ln_x,
time_mix_x,
time_mix_w,
time_mix_key,
time_mix_value,
time_mix_receptance,
time_decay,
time_faaaa,
time_mix_gate,
time_decay_w1,
time_decay_w2,
time_mix_w1,
time_mix_w2,
layer_id,
n_attn_heads,
})
}
pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
let h = self.n_attn_heads;
let (b, t, s) = xs.dims3()?;
let s = s / h;
let (receptance, key, value, gate, w) = {
let shifted = state.per_layer[self.layer_id].extract_key_value.clone();
let shifted = if shifted.rank() == 2 {
shifted.unsqueeze(1)?
} else {
shifted
};
let sx = (&shifted - xs)?;
let xxx = (xs + &sx * &self.time_mix_x)?;
let xxx = xxx
.broadcast_matmul(&self.time_mix_w1)?
.tanh()?
.reshape((b * t, 5, ()))?
.transpose(0, 1)?;
let xxx = xxx.matmul(&self.time_mix_w2)?.reshape((5, b, t, ()))?;
let (mw, mk, mv, mr, mg) = (xxx.i(0)?, xxx.i(1)?, xxx.i(2)?, xxx.i(3)?, xxx.i(4)?);
let xw = (xs + &sx * (&self.time_mix_w + &mw)?)?;
let xk = (xs + &sx * (&self.time_mix_key + &mk)?)?;
let xv = (xs + &sx * (&self.time_mix_value + &mv)?)?;
let xr = (xs + &sx * (&self.time_mix_receptance + &mr)?)?;
let xg = (xs + &sx * (&self.time_mix_gate + &mg)?)?;
let w = (&self.time_decay
+ xw.broadcast_matmul(&self.time_decay_w1)?
.tanh()?
.broadcast_matmul(&self.time_decay_w2)?)?
.reshape(((), 1, 1))?
.reshape((self.n_attn_heads, (), 1))?;
let key = self.key.forward(&xk)?;
let value = self.value.forward(&xv)?;
let receptance = self.receptance.forward(&xr)?;
let gate = candle_nn::ops::silu(&self.gate.forward(&xg)?)?;
state.per_layer[self.layer_id].extract_key_value = xs.i((.., t - 1))?;
(receptance, key, value, gate, w)
};
let mut state_ = state.per_layer[self.layer_id].linear_attention.clone();
let key = key.reshape((b, t, h, s))?.permute((0, 2, 3, 1))?;
let value = value.reshape((b, t, h, s))?.transpose(1, 2)?;
let receptance = receptance.reshape((b, t, h, s))?.transpose(1, 2)?;
let w = w.exp()?.neg()?.exp()?;
let time_faaaa =
self.time_faaaa
.reshape(((), 1, 1))?
.reshape((self.n_attn_heads, (), 1))?;
let mut out: Vec<Tensor> = Vec::with_capacity(t);
for t_ in 0..t {
let rt = receptance.i((.., .., t_..t_ + 1))?.contiguous()?;
let kt = key.i((.., .., .., t_..t_ + 1))?.contiguous()?;
let vt = value.i((.., .., t_..t_ + 1))?.contiguous()?;
let at = kt.matmul(&vt)?;
let rhs = (time_faaaa.broadcast_mul(&at)? + &state_)?;
let out_ = rt.matmul(&rhs)?.squeeze(2)?;
state_ = (&at + w.broadcast_mul(&state_))?;
out.push(out_)
}
let out = Tensor::cat(&out, 1)?.reshape((b * t, h * s, 1))?;
let out = out.apply(&self.ln_x)?.reshape((b, t, h * s))?;
let out = (out * gate)?.apply(&self.output)?;
state.per_layer[self.layer_id].linear_attention = state_;
Ok(out)
}
}
#[derive(Debug, Clone)]
struct FeedForward {
time_mix_key: Tensor,
time_mix_receptance: Tensor,
key: Linear,
receptance: Linear,
value: Linear,
layer_id: usize,
}
impl FeedForward {
fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let int_size = cfg
.intermediate_size
.unwrap_or(((cfg.hidden_size as f64 * 3.5) as usize) / 32 * 32);
let key = linear(cfg.hidden_size, int_size, vb.pp("key"))?;
let receptance = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("receptance"))?;
let value = linear(int_size, cfg.hidden_size, vb.pp("value"))?;
let time_mix_key = vb
.get((1, 1, cfg.hidden_size), "time_mix_key")?
.dequantize(vb.device())?;
let time_mix_receptance = vb
.get((1, 1, cfg.hidden_size), "time_mix_receptance")?
.dequantize(vb.device())?;
Ok(Self {
key,
receptance,
value,
time_mix_key,
time_mix_receptance,
layer_id,
})
}
fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
let shifted = state.per_layer[self.layer_id]
.feed_forward
.broadcast_sub(xs)?;
let key = (xs + shifted.broadcast_mul(&self.time_mix_key)?)?;
let receptance = (xs + shifted.broadcast_mul(&self.time_mix_receptance)?)?;
let key = key.apply(&self.key)?.relu()?.sqr()?;
let value = key.apply(&self.value)?;
let receptance = candle_nn::ops::sigmoid(&receptance.apply(&self.receptance)?)?;
state.per_layer[self.layer_id].feed_forward = xs.i((.., xs.dim(1)? - 1))?;
let xs = (receptance * value)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
struct Block {
pre_ln: Option<LayerNorm>,
ln1: LayerNorm,
ln2: LayerNorm,
attention: SelfAttention,
feed_forward: FeedForward,
}
impl Block {
fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let ln1 = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("ln1"))?;
let ln2 = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("ln2"))?;
let pre_ln = if layer_id == 0 {
let ln = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("pre_ln"))?;
Some(ln)
} else {
None
};
let attention = SelfAttention::new(layer_id, cfg, vb.pp("attention"))?;
let feed_forward = FeedForward::new(layer_id, cfg, vb.pp("feed_forward"))?;
Ok(Self {
pre_ln,
ln1,
ln2,
attention,
feed_forward,
})
}
fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
let xs = match self.pre_ln.as_ref() {
None => xs.clone(),
Some(pre_ln) => xs.apply(pre_ln)?,
};
let attention = self.attention.forward(&xs.apply(&self.ln1)?, state)?;
let xs = (xs + attention)?;
let feed_forward = self.feed_forward.forward(&xs.apply(&self.ln2)?, state)?;
let xs = (xs + feed_forward)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct Model {
embeddings: Embedding,
blocks: Vec<Block>,
ln_out: LayerNorm,
head: Linear,
rescale_every: usize,
layers_are_rescaled: bool,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("rwkv");
let embeddings = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embeddings"))?;
let mut blocks = Vec::with_capacity(cfg.num_hidden_layers);
let vb_b = vb_m.pp("blocks");
for block_index in 0..cfg.num_hidden_layers {
let block = Block::new(block_index, cfg, vb_b.pp(block_index))?;
blocks.push(block)
}
let ln_out = layer_norm(cfg.hidden_size, 1e-5, vb_m.pp("ln_out"))?;
let head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("head"))?;
Ok(Self {
embeddings,
blocks,
ln_out,
head,
rescale_every: cfg.rescale_every,
layers_are_rescaled: false, })
}
pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
let (_b_size, _seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.embeddings)?;
for (block_idx, block) in self.blocks.iter().enumerate() {
xs = block.forward(&xs, state)?;
if self.layers_are_rescaled && (block_idx + 1) % self.rescale_every == 0 {
xs = (xs / 2.)?
}
}
let xs = xs.apply(&self.ln_out)?.apply(&self.head)?;
state.pos += 1;
Ok(xs)
}
}