1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use crate::quantized_nn::{layer_norm, linear, linear_no_bias, Embedding, Linear};
pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{Activation, LayerNorm};
use std::sync::Arc;

pub use crate::models::stable_lm::Config;
use crate::models::stable_lm::RotaryEmbedding;

#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
    gate_proj: Linear,
    up_proj: Linear,
    down_proj: Linear,
    act_fn: Activation,
    span: tracing::Span,
}

impl MLP {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_sz = cfg.hidden_size;
        let intermediate_sz = cfg.intermediate_size;
        let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
        let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
        let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
        Ok(Self {
            gate_proj,
            up_proj,
            down_proj,
            act_fn: cfg.hidden_act,
            span: tracing::span!(tracing::Level::TRACE, "mlp"),
        })
    }
}

impl Module for MLP {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
        let rhs = xs.apply(&self.up_proj)?;
        (lhs * rhs)?.apply(&self.down_proj)
    }
}

#[derive(Debug, Clone)]
struct Attention {
    q_proj: Linear,
    k_proj: Linear,
    v_proj: Linear,
    o_proj: Linear,
    num_heads: usize,
    num_kv_heads: usize,
    num_kv_groups: usize,
    head_dim: usize,
    hidden_size: usize,
    rotary_emb: Arc<RotaryEmbedding>,
    kv_cache: Option<(Tensor, Tensor)>,
    use_cache: bool,
    rotary_ndims: usize,
    span: tracing::Span,
}

impl Attention {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_sz = cfg.hidden_size;
        let head_dim = cfg.head_dim();
        let num_heads = cfg.num_attention_heads;
        let num_kv_heads = cfg.num_key_value_heads;
        let linear_layer = if cfg.use_qkv_bias {
            linear
        } else {
            linear_no_bias
        };
        let q_proj = linear_layer(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
        let k_proj = linear_layer(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
        let v_proj = linear_layer(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
        let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
        Ok(Self {
            q_proj,
            k_proj,
            v_proj,
            o_proj,
            num_heads,
            num_kv_heads,
            num_kv_groups: cfg.num_kv_groups(),
            head_dim,
            hidden_size: hidden_sz,
            rotary_emb,
            kv_cache: None,
            use_cache: cfg.use_cache,
            rotary_ndims: cfg.rotary_ndims(),
            span: tracing::span!(tracing::Level::TRACE, "attn"),
        })
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        let _enter = self.span.enter();
        let (b_sz, q_len, _) = xs.dims3()?;

        let query_states = self.q_proj.forward(xs)?;
        let key_states = self.k_proj.forward(xs)?;
        let value_states = self.v_proj.forward(xs)?;

        let query_states = query_states
            .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
            .transpose(1, 2)?;
        let key_states = key_states
            .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
            .transpose(1, 2)?;
        let value_states = value_states
            .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
            .transpose(1, 2)?;

        let (rot_ndims, pass_ndims) = (self.rotary_ndims, self.head_dim - self.rotary_ndims);
        let query_rot = query_states.narrow(D::Minus1, 0, rot_ndims)?;
        let query_pass = query_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
        let key_rot = key_states.narrow(D::Minus1, 0, rot_ndims)?;
        let key_pass = key_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
        let (query_rot, key_rot) =
            self.rotary_emb
                .apply_rotary_emb_qkv(&query_rot, &key_rot, seqlen_offset)?;
        let query_states = Tensor::cat(&[query_rot, query_pass], D::Minus1)?.contiguous()?;
        let key_states = Tensor::cat(&[key_rot, key_pass], D::Minus1)?.contiguous()?;

        let (key_states, value_states) = match &self.kv_cache {
            None => (key_states, value_states),
            Some((prev_k, prev_v)) => {
                let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
                let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
                (key_states, value_states)
            }
        };
        if self.use_cache {
            self.kv_cache = Some((key_states.clone(), value_states.clone()));
        }

        let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
        let value_states =
            crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;

        let attn_output = {
            let scale = 1f64 / f64::sqrt(self.head_dim as f64);
            let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;

            let attn_weights = match attention_mask {
                None => attn_weights,
                Some(mask) => attn_weights.broadcast_add(mask)?,
            };
            let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
            attn_weights.matmul(&value_states)?
        };
        attn_output
            .transpose(1, 2)?
            .reshape((b_sz, q_len, self.hidden_size))?
            .apply(&self.o_proj)
    }
}

#[derive(Debug, Clone)]
struct DecoderLayer {
    self_attn: Attention,
    mlp: MLP,
    input_layernorm: LayerNorm,
    post_attention_layernorm: LayerNorm,
    span: tracing::Span,
}

impl DecoderLayer {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
        let mlp = MLP::new(cfg, vb.pp("mlp"))?;
        let input_layernorm = layer_norm(
            cfg.hidden_size,
            cfg.layer_norm_eps,
            vb.pp("input_layernorm"),
        )?;
        let post_attention_layernorm = layer_norm(
            cfg.hidden_size,
            cfg.layer_norm_eps,
            vb.pp("post_attention_layernorm"),
        )?;
        Ok(Self {
            self_attn,
            mlp,
            input_layernorm,
            post_attention_layernorm,
            span: tracing::span!(tracing::Level::TRACE, "layer"),
        })
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        let _enter = self.span.enter();
        let residual = xs;
        let xs = self.input_layernorm.forward(xs)?;
        let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
        let xs = (xs + residual)?;
        let residual = &xs;
        let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
        residual + xs
    }
}

#[derive(Debug, Clone)]
pub struct Model {
    embed_tokens: Embedding,
    layers: Vec<DecoderLayer>,
    norm: LayerNorm,
    lm_head: Linear,
    device: Device,
    span: tracing::Span,
}

impl Model {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb_m = vb.pp("model");
        let embed_tokens =
            Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
        let rotary_emb = Arc::new(RotaryEmbedding::new(DType::F32, cfg, vb_m.device())?);
        let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
        let vb_l = vb_m.pp("layers");
        for layer_idx in 0..cfg.num_hidden_layers {
            let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
            layers.push(layer)
        }
        let norm = layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb_m.pp("norm"))?;
        let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
        Ok(Self {
            embed_tokens,
            layers,
            norm,
            lm_head,
            device: vb.device().clone(),
            span: tracing::span!(tracing::Level::TRACE, "model"),
        })
    }

    fn prepare_decoder_attention_mask(
        &self,
        b_size: usize,
        tgt_len: usize,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        // Sliding window mask?
        let mask: Vec<_> = (0..tgt_len)
            .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
            .collect();
        let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
        let mask = if seqlen_offset > 0 {
            let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
            Tensor::cat(&[&mask0, &mask], D::Minus1)?
        } else {
            mask
        };
        mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
            .to_dtype(DType::F32)
    }

    pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
        let _enter = self.span.enter();
        let (b_size, seq_len) = input_ids.dims2()?;
        let attention_mask = if seq_len <= 1 {
            None
        } else {
            let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
            Some(mask)
        };
        let mut xs = self.embed_tokens.forward(input_ids)?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
        }
        xs.narrow(1, seq_len - 1, 1)?
            .apply(&self.norm)?
            .apply(&self.lm_head)
    }
}