1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
// This implementation is based on the python version from huggingface/transformers.
// https://github.com/huggingface/transformers/blob/b109257f4fb8b1166e7c53cc5418632014ed53a5/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py#L2
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{linear_b as linear, Linear, VarBuilder};
use std::sync::Arc;

#[derive(serde::Deserialize, Debug, Clone, Copy)]
#[serde(rename_all = "snake_case")]
pub enum TemporalBlockType {
    Attention,
    Recurrent,
}

#[derive(serde::Deserialize, Debug, Clone)]
pub struct Config {
    pub num_hidden_layers: usize,
    pub vocab_size: usize,
    pub hidden_size: usize,
    pub intermediate_size: usize,
    pub num_attention_heads: usize,
    pub num_key_value_heads: usize,
    pub head_dim: usize,
    pub lru_width: Option<usize>,
    pub attention_window_size: usize,
    pub conv1d_width: usize,
    pub logits_soft_cap: f64,
    pub hidden_activation: candle_nn::Activation,
    pub partial_rotary_factor: f64,
    pub rms_norm_eps: f64,
    pub rope_theta: f64,
    #[serde(alias = "_block_types")]
    pub block_types: Vec<TemporalBlockType>,
    pub attention_bias: bool,
    #[serde(default = "default_max_seq_len")]
    pub max_seq_len: usize,
}

fn default_max_seq_len() -> usize {
    8192
}

#[derive(Debug, Clone)]
pub(crate) struct RmsNorm {
    weight: Tensor,
    eps: f64,
}

impl RmsNorm {
    pub(crate) fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
        let weight = vb.get(dim, "weight")?;
        Ok(Self { weight, eps })
    }

    pub(crate) fn from_weight(weight: Tensor, eps: f64) -> Self {
        Self { weight, eps }
    }
}

impl Module for RmsNorm {
    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x_dtype = x.dtype();
        let internal_dtype = match x_dtype {
            DType::F16 | DType::BF16 => DType::F32,
            d => d,
        };
        let hidden_size = x.dim(D::Minus1)?;
        let x = x.to_dtype(internal_dtype)?;
        let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
        let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
        x_normed
            .to_dtype(x_dtype)?
            .broadcast_mul(&(&self.weight + 1.0)?)
    }
}

#[derive(Debug, Clone)]
pub(crate) struct RotaryEmbedding {
    sin: Tensor,
    cos: Tensor,
}

fn rotate_half(xs: &Tensor) -> Result<Tensor> {
    let last_dim = xs.dim(D::Minus1)?;
    let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
    let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
    Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
}

impl RotaryEmbedding {
    pub(crate) fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
        if cfg.partial_rotary_factor != 0.5 {
            candle::bail!("partial-rotary-factor {} <> 0.5", cfg.partial_rotary_factor)
        }
        let dim = cfg.head_dim / 2;
        let max_seq_len = cfg.max_seq_len;
        let inv_freq: Vec<_> = (0..dim)
            .step_by(2)
            .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
            .collect();
        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
        let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
            .to_dtype(dtype)?
            .reshape((max_seq_len, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
        Ok(Self {
            sin: freqs.sin()?,
            cos: freqs.cos()?,
        })
    }

    pub(crate) fn apply_rotary_emb_qkv(
        &self,
        q: &Tensor,
        k: &Tensor,
        seqlen_offset: usize,
    ) -> Result<(Tensor, Tensor)> {
        let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
        let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
        let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
        let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
        let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
        let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
        let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
        Ok((q_embed, k_embed))
    }
}

#[derive(Debug, Clone)]
struct Mlp {
    gate_proj: Linear,
    up_proj: Linear,
    down_proj: Linear,
    act_fn: candle_nn::Activation,
}

impl Mlp {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let h = cfg.hidden_size;
        let intermediate_size = cfg.intermediate_size / 2;
        let gate_proj = linear(h, intermediate_size, true, vb.pp("gate_proj"))?;
        let up_proj = linear(h, intermediate_size, true, vb.pp("up_proj"))?;
        let down_proj = linear(intermediate_size, h, true, vb.pp("down_proj"))?;
        Ok(Self {
            gate_proj,
            up_proj,
            down_proj,
            act_fn: cfg.hidden_activation,
        })
    }
}

impl Module for Mlp {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let gate = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
        (gate * xs.apply(&self.up_proj))?.apply(&self.down_proj)
    }
}

// Real-Gated Linear Recurrent Unit
#[derive(Debug, Clone)]
pub(crate) struct Rglru {
    pub(crate) recurrent_param: Tensor,
    pub(crate) input_gate_weight: Tensor,
    pub(crate) input_gate_bias: Tensor,
    pub(crate) recurrent_gate_weight: Tensor,
    pub(crate) recurrent_gate_bias: Tensor,
    pub(crate) block_width: usize,
    pub(crate) n_heads: usize,
    pub(crate) recurrent_states: Option<Tensor>,
}

fn baddbmm(a: &Tensor, b: &Tensor, c: &Tensor) -> Result<Tensor> {
    a.broadcast_add(&b.matmul(c)?)
}

fn softplus(xs: &Tensor) -> Result<Tensor> {
    (xs.exp()? + 1.0)?.log()
}

impl Rglru {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let h = cfg.hidden_size;
        let lru_width = cfg.lru_width.unwrap_or(h);
        let n_heads = cfg.num_attention_heads;
        let block_width = lru_width / n_heads;
        let recurrent_param = vb.get((lru_width,), "recurrent_param")?;
        let input_gate_weight = vb.get((n_heads, block_width, block_width), "input_gate_weight")?;
        let input_gate_bias = vb.get((n_heads, block_width), "input_gate_bias")?;
        let recurrent_gate_weight =
            vb.get((n_heads, block_width, block_width), "recurrent_gate_weight")?;
        let recurrent_gate_bias = vb.get((n_heads, block_width), "recurrent_gate_bias")?;
        Ok(Self {
            recurrent_param,
            input_gate_bias,
            input_gate_weight,
            recurrent_gate_bias,
            recurrent_gate_weight,
            block_width,
            n_heads,
            recurrent_states: None,
        })
    }

    // https://github.com/huggingface/transformers/blob/0bd58f1ce0573c0e3269de4215a17d318add49b9/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py#L303
    pub(crate) fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
        let (b_sz, seq_len, lru_width) = xs.dims3()?;
        let pos = Tensor::arange(pos as u32, (pos + seq_len) as u32, xs.device())?;
        let reset = pos.eq(0u32)?.unsqueeze(1)?.unsqueeze(0)?;
        let reshape_act = xs
            .reshape((b_sz * seq_len, self.n_heads, self.block_width))?
            .permute((1, 0, 2))?
            .contiguous()?;

        let res = baddbmm(
            &self.input_gate_bias.unsqueeze(1)?,
            &reshape_act,
            &self.input_gate_weight,
        )?;
        let input_gate = res.transpose(0, 1)?.reshape((b_sz, seq_len, lru_width))?;
        let input_gate = candle_nn::ops::sigmoid(&input_gate)?;
        let res = baddbmm(
            &self.recurrent_gate_bias.unsqueeze(1)?,
            &reshape_act,
            &self.recurrent_gate_weight,
        )?;
        let recurrent_gate = res.transpose(0, 1)?.reshape((b_sz, seq_len, lru_width))?;
        let recurrent_gate = candle_nn::ops::sigmoid(&recurrent_gate)?;

        let log_recurrent_gate =
            (recurrent_gate * (-8.0))?.broadcast_mul(&softplus(&self.recurrent_param)?)?;
        let recurrent_gate = log_recurrent_gate.exp()?;
        let a_square = (log_recurrent_gate * 2.)?.exp()?;

        // Gate the input.
        let gated_inputs = (xs * input_gate)?;

        let reset = reset.to_dtype(a_square.dtype())?;
        let multiplier =
            reset.broadcast_add(&((1.0 - &reset)?.broadcast_mul(&(1.0 - a_square)?.sqrt()?))?)?;
        let normalized_x = (gated_inputs * multiplier.to_dtype(xs.dtype()))?;

        let (hidden_states, recurrent_states) = rnn_scan(
            &normalized_x,
            &recurrent_gate,
            &reset,
            self.recurrent_states.as_ref(),
        )?;
        self.recurrent_states = Some(recurrent_states);
        Ok(hidden_states)
    }
}

fn rnn_scan(
    hidden_states: &Tensor,
    recurrent_gate: &Tensor,
    reset: &Tensor,
    recurrent_states: Option<&Tensor>,
) -> Result<(Tensor, Tensor)> {
    let acc_dtype = DType::F32;
    let dev = hidden_states.device();
    let in_dtype = hidden_states.dtype();
    let inv_reset = (1.0 - reset)?.to_dtype(recurrent_gate.dtype())?;
    let recurrent_gate = recurrent_gate.broadcast_mul(&inv_reset)?;
    let (c, r) = if hidden_states.dim(1)? == 1 {
        match recurrent_states {
            None => {
                let next_state = hidden_states.i((.., 0))?.to_dtype(acc_dtype)?;
                (hidden_states.clone(), next_state)
            }
            Some(recurrent_states) => {
                let contextualized_states =
                    recurrent_gate.to_dtype(acc_dtype)? * recurrent_states.unsqueeze(1)?;
                let contextualized_states =
                    (contextualized_states + hidden_states.to_dtype(acc_dtype)?)?;
                let c = contextualized_states.to_dtype(in_dtype)?;
                let l = contextualized_states.dim(1)?;
                let r = contextualized_states.i((.., l - 1))?;
                (c, r)
            }
        }
    } else {
        let mut recurrent_states = match recurrent_states {
            None => Tensor::zeros(hidden_states.i((.., 0))?.shape(), acc_dtype, dev)?,
            Some(r) => r.clone(),
        };
        let mut contextualized_states = vec![];
        for t in 0..hidden_states.dim(1)? {
            recurrent_states =
                (recurrent_gate.i((.., t))?.to_dtype(acc_dtype)? * recurrent_states)?;
            recurrent_states =
                (recurrent_states + hidden_states.i((.., t))?.to_dtype(acc_dtype)?)?;
            contextualized_states.push(recurrent_states.to_dtype(in_dtype)?)
        }
        let contextualized_states = Tensor::stack(&contextualized_states, 1)?;
        (contextualized_states, recurrent_states)
    };
    Ok((c, r))
}

#[derive(Debug, Clone)]
struct RecurrentBlock {
    linear_y: Linear,
    linear_x: Linear,
    linear_out: Linear,
    conv_1d: candle_nn::Conv1d,
    conv1d_state: Option<Tensor>,
    conv1d_width: usize,
    rg_lru: Rglru,
    act_fn: candle_nn::Activation,
}

impl RecurrentBlock {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let h = cfg.hidden_size;
        let lru_width = cfg.lru_width.unwrap_or(h);
        let linear_y = linear(h, lru_width, true, vb.pp("linear_y"))?;
        let linear_x = linear(h, lru_width, true, vb.pp("linear_x"))?;
        let linear_out = linear(lru_width, h, true, vb.pp("linear_out"))?;
        let conv_1d = candle_nn::conv1d(
            lru_width,
            lru_width,
            cfg.conv1d_width,
            candle_nn::Conv1dConfig {
                groups: lru_width,
                padding: cfg.conv1d_width - 1,
                ..Default::default()
            },
            vb.pp("conv_1d"),
        )?;
        let rg_lru = Rglru::new(cfg, vb.pp("rg_lru"))?;
        Ok(Self {
            linear_y,
            linear_x,
            linear_out,
            conv_1d,
            conv1d_state: None,
            conv1d_width: cfg.conv1d_width,
            rg_lru,
            act_fn: cfg.hidden_activation,
        })
    }

    pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
        let (_b_sz, seq_len, _) = xs.dims3()?;

        let y_branch = xs.apply(&self.linear_y)?.apply(&self.act_fn)?;
        let x_branch = xs.apply(&self.linear_x)?.transpose(1, 2)?;
        let x_branch = if pos == 0 {
            let x_len = x_branch.dim(D::Minus1)?;
            let pad = self.conv1d_width as i64 - x_len as i64 - 1;
            let padded = match pad.cmp(&0) {
                std::cmp::Ordering::Equal => x_branch.clone(),
                std::cmp::Ordering::Less => {
                    let rev_pad = (-pad) as usize;
                    x_branch.narrow(D::Minus1, rev_pad, x_len - rev_pad)?
                }
                std::cmp::Ordering::Greater => {
                    x_branch.pad_with_zeros(D::Minus1, pad as usize, 0)?
                }
            };
            self.conv1d_state = Some(padded);
            x_branch
                .apply(&self.conv_1d)?
                .narrow(D::Minus1, 0, seq_len)?
        } else {
            let conv_state = match self.conv1d_state.as_ref() {
                None => candle::bail!("empty cache despite pos > 0"),
                Some(s) => Tensor::cat(&[s, &x_branch], D::Minus1)?,
            };
            let w = self.conv_1d.weight().i((.., 0, ..))?;
            let x_branch = conv_state.broadcast_mul(&w)?.sum(D::Minus1)?;
            let x_branch = match self.conv_1d.bias() {
                None => x_branch,
                Some(b) => x_branch.broadcast_add(b)?,
            };
            let x_branch = x_branch.unsqueeze(D::Minus1)?;
            self.conv1d_state = Some(conv_state.i((.., .., 1..))?);
            x_branch
        };
        let x_branch = x_branch.transpose(1, 2)?;
        let x_branch = self.rg_lru.forward(&x_branch, pos)?;
        (x_branch * y_branch)?.apply(&self.linear_out)
    }
}

#[derive(Debug, Clone)]
struct SdpaAttention {
    q_proj: Linear,
    k_proj: Linear,
    v_proj: Linear,
    o_proj: Linear,
    n_heads: usize,
    n_kv_heads: usize,
    head_dim: usize,
    hidden_size: usize,
    kv_cache: Option<(Tensor, Tensor)>,
    rotary_emb: Arc<RotaryEmbedding>,
}

impl SdpaAttention {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let h = cfg.hidden_size;
        let n_heads = cfg.num_attention_heads;
        let n_kv_heads = cfg.num_key_value_heads;
        let hd = cfg.head_dim;
        let q_proj = linear(h, n_heads * hd, cfg.attention_bias, vb.pp("q_proj"))?;
        let k_proj = linear(h, n_kv_heads * hd, cfg.attention_bias, vb.pp("k_proj"))?;
        let v_proj = linear(h, n_kv_heads * hd, cfg.attention_bias, vb.pp("v_proj"))?;
        let o_proj = linear(n_heads * hd, h, true, vb.pp("o_proj"))?;
        Ok(Self {
            q_proj,
            k_proj,
            v_proj,
            o_proj,
            n_heads,
            n_kv_heads,
            head_dim: hd,
            hidden_size: h,
            kv_cache: None,
            rotary_emb,
        })
    }

    fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
        let n_rep = self.n_heads / self.n_kv_heads;
        crate::utils::repeat_kv(x, n_rep)
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        pos: usize,
    ) -> Result<Tensor> {
        let (bsz, q_len, _) = xs.dims3()?;

        let query_states = xs.apply(&self.q_proj)?;
        let key_states = xs.apply(&self.k_proj)?;
        let value_states = xs.apply(&self.v_proj)?;

        let query_states = query_states
            .reshape((bsz, q_len, self.n_heads, self.head_dim))?
            .transpose(1, 2)?;
        let key_states = key_states
            .reshape((bsz, q_len, self.n_kv_heads, self.head_dim))?
            .transpose(1, 2)?;
        let value_states = value_states
            .reshape((bsz, q_len, self.n_kv_heads, self.head_dim))?
            .transpose(1, 2)?;
        let query_states = query_states.chunk(2, D::Minus1)?;
        let key_states = key_states.chunk(2, D::Minus1)?;
        let (query_rot, key_rot) =
            self.rotary_emb
                .apply_rotary_emb_qkv(&query_states[0], &key_states[0], pos)?;
        let query_states = Tensor::cat(&[&query_rot, &query_states[1]], D::Minus1)?.contiguous()?;
        let key_states = Tensor::cat(&[&key_rot, &key_states[1]], D::Minus1)?.contiguous()?;

        let (key_states, value_states) = match &self.kv_cache {
            None => (key_states, value_states),
            Some((prev_k, prev_v)) => {
                let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
                let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
                (key_states, value_states)
            }
        };
        self.kv_cache = Some((key_states.clone(), value_states.clone()));

        let key_states = self.repeat_kv(key_states)?;
        let value_states = self.repeat_kv(value_states)?;
        let xs = {
            let att = (query_states.matmul(&key_states.t()?)? / (self.head_dim as f64).sqrt())?;
            let att = if q_len == 1 {
                att
            } else {
                match attention_mask {
                    None => att,
                    Some(mask) => att.broadcast_add(mask)?,
                }
            };
            let att = candle_nn::ops::softmax_last_dim(&att)?;
            att.matmul(&value_states.contiguous()?)?
        };

        let xs = xs
            .transpose(1, 2)?
            .reshape((bsz, q_len, self.hidden_size))?;
        self.o_proj.forward(&xs)
    }
}

#[derive(Debug, Clone)]
enum TemporalBlock {
    Recurrent(RecurrentBlock),
    Attention(SdpaAttention),
}

impl TemporalBlock {
    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        pos: usize,
    ) -> Result<Tensor> {
        match self {
            Self::Recurrent(b) => b.forward(xs, pos),
            Self::Attention(b) => b.forward(xs, attention_mask, pos),
        }
    }
}

#[derive(Debug, Clone)]
struct DecoderLayer {
    temporal_pre_norm: RmsNorm,
    channel_pre_norm: RmsNorm,
    temporal_block: TemporalBlock,
    mlp_block: Mlp,
}

impl DecoderLayer {
    fn new(
        block_idx: usize,
        rotary_emb: Arc<RotaryEmbedding>,
        cfg: &Config,
        vb: VarBuilder,
    ) -> Result<Self> {
        let h = cfg.hidden_size;
        let temporal_pre_norm = RmsNorm::new(h, cfg.rms_norm_eps, vb.pp("temporal_pre_norm"))?;
        let channel_pre_norm = RmsNorm::new(h, cfg.rms_norm_eps, vb.pp("channel_pre_norm"))?;
        let temporal_block = match cfg.block_types[block_idx % cfg.block_types.len()] {
            TemporalBlockType::Recurrent => {
                let block = RecurrentBlock::new(cfg, vb.pp("temporal_block"))?;
                TemporalBlock::Recurrent(block)
            }
            TemporalBlockType::Attention => {
                let block = SdpaAttention::new(rotary_emb, cfg, vb.pp("temporal_block"))?;
                TemporalBlock::Attention(block)
            }
        };
        let mlp_block = Mlp::new(cfg, vb.pp("mlp_block"))?;
        Ok(Self {
            temporal_pre_norm,
            channel_pre_norm,
            temporal_block,
            mlp_block,
        })
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: Option<&Tensor>,
        pos: usize,
    ) -> Result<Tensor> {
        let residual = xs;
        let xs = xs.apply(&self.temporal_pre_norm)?;
        let xs = self.temporal_block.forward(&xs, attention_mask, pos)?;
        let xs = (xs + residual)?;
        let residual = &xs;
        let xs = xs.apply(&self.channel_pre_norm)?.apply(&self.mlp_block)?;
        xs + residual
    }
}

#[derive(Debug, Clone)]
pub struct Model {
    embed_tokens: candle_nn::Embedding,
    layers: Vec<DecoderLayer>,
    final_norm: RmsNorm,
    lm_head: Linear,
    hidden_size: usize,
    logits_soft_cap: f64,
    dtype: DType,
    device: Device,
}

impl Model {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let embed_tokens =
            candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb.pp("embed_tokens"))?;
        let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb.device())?);
        let vb_b = vb.pp("layers");
        let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
        for idx in 0..cfg.num_hidden_layers {
            let layer = DecoderLayer::new(idx, rotary_emb.clone(), cfg, vb_b.pp(idx))?;
            layers.push(layer)
        }
        let final_norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("final_norm"))?;
        let lm_head = Linear::new(embed_tokens.embeddings().clone(), None);
        Ok(Self {
            embed_tokens,
            layers,
            final_norm,
            lm_head,
            hidden_size: cfg.hidden_size,
            logits_soft_cap: cfg.logits_soft_cap,
            dtype: vb.dtype(),
            device: vb.device().clone(),
        })
    }

    fn prepare_decoder_attention_mask(
        &self,
        b_size: usize,
        tgt_len: usize,
        seqlen_offset: usize,
    ) -> Result<Tensor> {
        let mask: Vec<_> = (0..tgt_len)
            .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
            .collect();
        let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
        let mask = if seqlen_offset > 0 {
            let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
            Tensor::cat(&[&mask0, &mask], D::Minus1)?
        } else {
            mask
        };
        mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
            .to_dtype(self.dtype)
    }

    pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
        let (b_size, seq_len) = xs.dims2()?;
        let attention_mask = if seq_len <= 1 {
            None
        } else {
            let mask = self.prepare_decoder_attention_mask(b_size, seq_len, pos)?;
            Some(mask)
        };
        let xs = xs.apply(&self.embed_tokens)?;
        let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, attention_mask.as_ref(), pos)?;
        }
        let logits = xs
            .narrow(1, seq_len - 1, 1)?
            .apply(&self.final_norm)?
            .apply(&self.lm_head)?;
        let logits = ((logits / self.logits_soft_cap)?.tanh()? * self.logits_soft_cap)?;
        Ok(logits)
    }
}