1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use candle::{IndexOp, Result, Tensor};
use candle_nn::{Module, VarBuilder};

use super::transformer::TwoWayTransformer;

#[derive(Debug)]
struct MlpMaskDecoder {
    layers: Vec<super::Linear>,
    sigmoid_output: bool,
    span: tracing::Span,
}

impl MlpMaskDecoder {
    fn new(
        input_dim: usize,
        hidden_dim: usize,
        output_dim: usize,
        num_layers: usize,
        sigmoid_output: bool,
        vb: VarBuilder,
    ) -> Result<Self> {
        let mut layers = Vec::with_capacity(num_layers);
        let vb = vb.pp("layers");
        for i in 0..num_layers {
            let in_dim = if i == 0 { input_dim } else { hidden_dim };
            let out_dim = if i + 1 == num_layers {
                output_dim
            } else {
                hidden_dim
            };
            let layer = super::linear(vb.pp(i), in_dim, out_dim, true)?;
            layers.push(layer)
        }
        let span = tracing::span!(tracing::Level::TRACE, "mlp-mask-decoder");
        Ok(Self {
            layers,
            sigmoid_output,
            span,
        })
    }
}

impl Module for MlpMaskDecoder {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        let mut xs = xs.clone();
        for (i, layer) in self.layers.iter().enumerate() {
            xs = layer.forward(&xs)?;
            if i + 1 < self.layers.len() {
                xs = xs.relu()?
            }
        }
        if self.sigmoid_output {
            candle_nn::ops::sigmoid(&xs)
        } else {
            Ok(xs)
        }
    }
}

#[derive(Debug)]
pub struct MaskDecoder {
    iou_token: candle_nn::Embedding,
    mask_tokens: candle_nn::Embedding,
    iou_prediction_head: MlpMaskDecoder,
    output_upscaling_conv1: candle_nn::ConvTranspose2d,
    output_upscaling_ln: super::LayerNorm2d,
    output_upscaling_conv2: candle_nn::ConvTranspose2d,
    num_mask_tokens: usize,
    output_hypernetworks_mlps: Vec<MlpMaskDecoder>,
    transformer: TwoWayTransformer,
    span: tracing::Span,
}

impl MaskDecoder {
    pub fn new(
        transformer_dim: usize,
        num_multimask_outputs: usize,
        iou_head_depth: usize,
        iou_head_hidden_dim: usize,
        vb: VarBuilder,
    ) -> Result<Self> {
        let num_mask_tokens = num_multimask_outputs + 1;
        let iou_prediction_head = MlpMaskDecoder::new(
            transformer_dim,
            iou_head_hidden_dim,
            num_mask_tokens,
            iou_head_depth,
            false,
            vb.pp("iou_prediction_head"),
        )?;
        let iou_token = candle_nn::embedding(1, transformer_dim, vb.pp("iou_token"))?;
        let mask_tokens =
            candle_nn::embedding(num_mask_tokens, transformer_dim, vb.pp("mask_tokens"))?;
        let cfg = candle_nn::ConvTranspose2dConfig {
            stride: 2,
            ..Default::default()
        };
        let output_upscaling_conv1 = candle_nn::conv_transpose2d(
            transformer_dim,
            transformer_dim / 4,
            2,
            cfg,
            vb.pp("output_upscaling.0"),
        )?;
        let output_upscaling_ln =
            super::LayerNorm2d::new(transformer_dim / 4, 1e-6, vb.pp("output_upscaling.1"))?;
        let output_upscaling_conv2 = candle_nn::conv_transpose2d(
            transformer_dim / 4,
            transformer_dim / 8,
            2,
            cfg,
            vb.pp("output_upscaling.3"),
        )?;
        let mut output_hypernetworks_mlps = Vec::with_capacity(num_mask_tokens);
        let vb_o = vb.pp("output_hypernetworks_mlps");
        for i in 0..num_mask_tokens {
            let mlp = MlpMaskDecoder::new(
                transformer_dim,
                transformer_dim,
                transformer_dim / 8,
                3,
                false,
                vb_o.pp(i),
            )?;
            output_hypernetworks_mlps.push(mlp)
        }
        let transformer = TwoWayTransformer::new(
            /* depth */ 2,
            /* embedding_dim */ transformer_dim,
            /* num_heads */ 8,
            /* mlp_dim */ 2048,
            vb.pp("transformer"),
        )?;
        let span = tracing::span!(tracing::Level::TRACE, "mask-decoder");
        Ok(Self {
            iou_token,
            mask_tokens,
            iou_prediction_head,
            output_upscaling_conv1,
            output_upscaling_ln,
            output_upscaling_conv2,
            num_mask_tokens,
            output_hypernetworks_mlps,
            transformer,
            span,
        })
    }

    pub fn forward(
        &self,
        image_embeddings: &Tensor,
        image_pe: &Tensor,
        sparse_prompt_embeddings: &Tensor,
        dense_prompt_embeddings: &Tensor,
        multimask_output: bool,
    ) -> Result<(Tensor, Tensor)> {
        let _enter = self.span.enter();
        let (masks, iou_pred) = self.predict_masks(
            image_embeddings,
            image_pe,
            sparse_prompt_embeddings,
            dense_prompt_embeddings,
        )?;
        let masks = if multimask_output {
            masks.i((.., 1..))?
        } else {
            masks.i((.., 0..1))?
        };
        let iou_pred = if multimask_output {
            iou_pred.i((.., 1..))?
        } else {
            iou_pred.i((.., 0..1))?
        };
        Ok((masks, iou_pred))
    }

    fn predict_masks(
        &self,
        image_embeddings: &Tensor,
        image_pe: &Tensor,
        sparse_prompt_embeddings: &Tensor,
        dense_prompt_embeddings: &Tensor,
    ) -> Result<(Tensor, Tensor)> {
        // Concatenate output tokens.
        let output_tokens = Tensor::cat(
            &[self.iou_token.embeddings(), self.mask_tokens.embeddings()],
            0,
        )?;
        let (d1, d2) = output_tokens.dims2()?;
        let output_tokens =
            output_tokens
                .unsqueeze(0)?
                .expand((sparse_prompt_embeddings.dim(0)?, d1, d2))?;
        let tokens = Tensor::cat(&[&output_tokens, sparse_prompt_embeddings], 1)?;

        // Expand per-image data in batch direction to be per mask
        let src = repeat_interleave(image_embeddings, tokens.dim(0)?, 0)?;
        let src = src.broadcast_add(dense_prompt_embeddings)?;
        let pos_src = repeat_interleave(image_pe, tokens.dim(0)?, 0)?;
        let (b, c, h, w) = src.dims4()?;

        // Run the transformer
        let (hs, src) = self.transformer.forward(&src, &pos_src, &tokens)?;
        let iou_token_out = hs.i((.., 0))?;
        let mask_tokens_out = hs.i((.., 1..1 + self.num_mask_tokens))?;

        // Upscale mask embeddings and predict masks using the masks tokens.
        let src = src.transpose(1, 2)?.reshape((b, c, h, w))?;
        let upscaled_embedding = self
            .output_upscaling_conv1
            .forward(&src)?
            .apply(&self.output_upscaling_ln)?
            .gelu()?
            .apply(&self.output_upscaling_conv2)?
            .gelu()?;
        let mut hyper_in_list = Vec::with_capacity(self.num_mask_tokens);
        for (i, mlp) in self.output_hypernetworks_mlps.iter().enumerate() {
            let h = mlp.forward(&mask_tokens_out.i((.., i))?)?;
            hyper_in_list.push(h)
        }
        let hyper_in = Tensor::stack(hyper_in_list.as_slice(), 1)?.contiguous()?;
        let (b, c, h, w) = upscaled_embedding.dims4()?;
        let masks = hyper_in.matmul(&upscaled_embedding.reshape((b, c, h * w))?)?;
        let masks = masks.reshape((b, (), h, w))?;

        // Generate mask quality predictions.
        let iou_pred = self.iou_prediction_head.forward(&iou_token_out)?;
        Ok((masks, iou_pred))
    }
}

// Equivalent to torch.repeat_interleave
fn repeat_interleave(img: &Tensor, repeats: usize, dim: usize) -> Result<Tensor> {
    let img = img.unsqueeze(dim + 1)?;
    let mut dims = img.dims().to_vec();
    dims[dim + 1] = repeats;
    img.broadcast_as(dims)?.flatten(dim, dim + 1)
}