1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use candle::{DType, IndexOp, Result, Tensor, D};
use candle_nn::VarBuilder;

#[derive(Debug)]
struct PositionEmbeddingRandom {
    positional_encoding_gaussian_matrix: Tensor,
}

impl PositionEmbeddingRandom {
    fn new(num_pos_feats: usize, vb: VarBuilder) -> Result<Self> {
        let positional_encoding_gaussian_matrix =
            vb.get((2, num_pos_feats), "positional_encoding_gaussian_matrix")?;
        Ok(Self {
            positional_encoding_gaussian_matrix,
        })
    }

    fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> {
        let coords = coords.affine(2., -1.)?;
        let coords = coords.broadcast_matmul(&self.positional_encoding_gaussian_matrix)?;
        let coords = (coords * (2. * std::f64::consts::PI))?;
        Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1)
    }

    fn forward(&self, h: usize, w: usize) -> Result<Tensor> {
        let device = self.positional_encoding_gaussian_matrix.device();
        let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
        let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
        let x_embed = (x_embed / w as f64)?
            .reshape((1, ()))?
            .broadcast_as((h, w))?;
        let y_embed = (y_embed / h as f64)?
            .reshape(((), 1))?
            .broadcast_as((h, w))?;
        let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
        self.pe_encoding(&coords)?.permute((2, 0, 1))
    }

    fn forward_with_coords(
        &self,
        coords_input: &Tensor,
        image_size: (usize, usize),
    ) -> Result<Tensor> {
        let coords0 = (coords_input.narrow(D::Minus1, 0, 1)? / image_size.1 as f64)?;
        let coords1 = (coords_input.narrow(D::Minus1, 1, 1)? / image_size.0 as f64)?;
        let c = coords_input.dim(D::Minus1)?;
        let coords_rest = coords_input.narrow(D::Minus1, 2, c - 2)?;
        let coords = Tensor::cat(&[&coords0, &coords1, &coords_rest], D::Minus1)?;
        self.pe_encoding(&coords)
    }
}

#[derive(Debug)]
pub struct PromptEncoder {
    pe_layer: PositionEmbeddingRandom,
    point_embeddings: Vec<candle_nn::Embedding>,
    not_a_point_embed: candle_nn::Embedding,
    mask_downscaling_conv1: candle_nn::Conv2d,
    mask_downscaling_ln1: super::LayerNorm2d,
    mask_downscaling_conv2: candle_nn::Conv2d,
    mask_downscaling_ln2: super::LayerNorm2d,
    mask_downscaling_conv3: candle_nn::Conv2d,
    no_mask_embed: candle_nn::Embedding,
    image_embedding_size: (usize, usize),
    input_image_size: (usize, usize),
    embed_dim: usize,
    span: tracing::Span,
}

impl PromptEncoder {
    pub fn new(
        embed_dim: usize,
        image_embedding_size: (usize, usize),
        input_image_size: (usize, usize),
        mask_in_chans: usize,
        vb: VarBuilder,
    ) -> Result<Self> {
        let num_points_embeddings = 4;
        let pe_layer = PositionEmbeddingRandom::new(embed_dim / 2, vb.pp("pe_layer"))?;
        let not_a_point_embed = candle_nn::embedding(1, embed_dim, vb.pp("not_a_point_embed"))?;
        let no_mask_embed = candle_nn::embedding(1, embed_dim, vb.pp("no_mask_embed"))?;
        let cfg = candle_nn::Conv2dConfig {
            stride: 2,
            ..Default::default()
        };
        let mask_downscaling_conv1 =
            candle_nn::conv2d(1, mask_in_chans / 4, 2, cfg, vb.pp("mask_downscaling.0"))?;
        let mask_downscaling_conv2 = candle_nn::conv2d(
            mask_in_chans / 4,
            mask_in_chans,
            2,
            cfg,
            vb.pp("mask_downscaling.3"),
        )?;
        let mask_downscaling_conv3 = candle_nn::conv2d(
            mask_in_chans,
            embed_dim,
            1,
            Default::default(),
            vb.pp("mask_downscaling.6"),
        )?;
        let mask_downscaling_ln1 =
            super::LayerNorm2d::new(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
        let mask_downscaling_ln2 =
            super::LayerNorm2d::new(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
        let mut point_embeddings = Vec::with_capacity(num_points_embeddings);
        let vb_e = vb.pp("point_embeddings");
        for i in 0..num_points_embeddings {
            let emb = candle_nn::embedding(1, embed_dim, vb_e.pp(i))?;
            point_embeddings.push(emb)
        }
        let span = tracing::span!(tracing::Level::TRACE, "prompt-encoder");
        Ok(Self {
            pe_layer,
            point_embeddings,
            not_a_point_embed,
            mask_downscaling_conv1,
            mask_downscaling_ln1,
            mask_downscaling_conv2,
            mask_downscaling_ln2,
            mask_downscaling_conv3,
            no_mask_embed,
            image_embedding_size,
            input_image_size,
            embed_dim,
            span,
        })
    }

    pub fn get_dense_pe(&self) -> Result<Tensor> {
        self.pe_layer
            .forward(self.image_embedding_size.0, self.image_embedding_size.1)?
            .unsqueeze(0)
    }

    fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> {
        masks
            .apply(&self.mask_downscaling_conv1)?
            .apply(&self.mask_downscaling_ln1)?
            .gelu()?
            .apply(&self.mask_downscaling_conv2)?
            .apply(&self.mask_downscaling_ln2)?
            .gelu()?
            .apply(&self.mask_downscaling_conv3)
    }

    fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> {
        let points = (points + 0.5)?;
        let dev = points.device();
        let (points, labels) = if pad {
            let padding_point = Tensor::zeros((points.dim(0)?, 1, 2), DType::F32, dev)?;
            let padding_label = (Tensor::ones((labels.dim(0)?, 1), DType::F32, dev)? * (-1f64))?;
            let points = Tensor::cat(&[&points, &padding_point], 1)?;
            let labels = Tensor::cat(&[labels, &padding_label], 1)?;
            (points, labels)
        } else {
            (points, labels.clone())
        };
        let point_embedding = self
            .pe_layer
            .forward_with_coords(&points, self.input_image_size)?;
        let labels = labels.unsqueeze(2)?.broadcast_as(point_embedding.shape())?;
        let zeros = point_embedding.zeros_like()?;
        let point_embedding = labels.lt(0f32)?.where_cond(
            &self
                .not_a_point_embed
                .embeddings()
                .broadcast_as(zeros.shape())?,
            &point_embedding,
        )?;
        let labels0 = labels.eq(0f32)?.where_cond(
            &self.point_embeddings[0]
                .embeddings()
                .broadcast_as(zeros.shape())?,
            &zeros,
        )?;
        let point_embedding = (point_embedding + labels0)?;
        let labels1 = labels.eq(1f32)?.where_cond(
            &self.point_embeddings[1]
                .embeddings()
                .broadcast_as(zeros.shape())?,
            &zeros,
        )?;
        let point_embedding = (point_embedding + labels1)?;
        Ok(point_embedding)
    }

    fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> {
        let boxes = (boxes + 0.5)?;
        let coords = boxes.reshape(((), 2, 2))?;
        let corner_embedding = self
            .pe_layer
            .forward_with_coords(&coords, self.input_image_size)?;
        let ce1 = corner_embedding.i((.., 0))?;
        let ce2 = corner_embedding.i((.., 1))?;
        let ce1 = (ce1 + self.point_embeddings[2].embeddings())?;
        let ce2 = (ce2 + self.point_embeddings[3].embeddings())?;
        Tensor::cat(&[&ce1, &ce2], 1)
    }

    pub fn forward(
        &self,
        points: Option<(&Tensor, &Tensor)>,
        boxes: Option<&Tensor>,
        masks: Option<&Tensor>,
    ) -> Result<(Tensor, Tensor)> {
        let _enter = self.span.enter();
        let se_points = match points {
            Some((coords, labels)) => Some(self.embed_points(coords, labels, boxes.is_none())?),
            None => None,
        };
        let se_boxes = match boxes {
            Some(boxes) => Some(self.embed_boxes(boxes)?),
            None => None,
        };
        let sparse_embeddings = match (se_points, se_boxes) {
            (Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?,
            (Some(se_points), None) => se_points,
            (None, Some(se_boxes)) => se_boxes,
            (None, None) => {
                let dev = self.no_mask_embed.embeddings().device();
                Tensor::zeros((1, 0, self.embed_dim), DType::F32, dev)?
            }
        };

        let dense_embeddings = match masks {
            None => {
                let emb = self.no_mask_embed.embeddings();
                emb.reshape((1, (), 1, 1))?.expand((
                    1,
                    emb.elem_count(),
                    self.image_embedding_size.0,
                    self.image_embedding_size.1,
                ))?
            }
            Some(masks) => self.embed_masks(masks)?,
        };
        Ok((sparse_embeddings, dense_embeddings))
    }
}