1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use candle::{Result, Tensor};
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};

#[derive(Debug)]
struct Attention {
    q_proj: Linear,
    k_proj: Linear,
    v_proj: Linear,
    out_proj: Linear,
    num_heads: usize,
}

impl Attention {
    fn new(
        embedding_dim: usize,
        num_heads: usize,
        downsample_rate: usize,
        vb: VarBuilder,
    ) -> Result<Self> {
        let internal_dim = embedding_dim / downsample_rate;
        let q_proj = candle_nn::linear(embedding_dim, internal_dim, vb.pp("q_proj"))?;
        let k_proj = candle_nn::linear(embedding_dim, internal_dim, vb.pp("k_proj"))?;
        let v_proj = candle_nn::linear(embedding_dim, internal_dim, vb.pp("v_proj"))?;
        let out_proj = candle_nn::linear(internal_dim, embedding_dim, vb.pp("out_proj"))?;
        Ok(Self {
            q_proj,
            k_proj,
            v_proj,
            out_proj,
            num_heads,
        })
    }

    fn separate_heads(&self, x: &Tensor) -> Result<Tensor> {
        let (b, n, c) = x.dims3()?;
        x.reshape((b, n, self.num_heads, c / self.num_heads))?
            .transpose(1, 2)?
            .contiguous()
    }

    fn recombine_heads(&self, x: &Tensor) -> Result<Tensor> {
        let (b, n_heads, n_tokens, c_per_head) = x.dims4()?;
        x.transpose(1, 2)?
            .reshape((b, n_tokens, n_heads * c_per_head))
    }

    fn forward(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
        let q = self.q_proj.forward(&q.contiguous()?)?;
        let k = self.k_proj.forward(&k.contiguous()?)?;
        let v = self.v_proj.forward(&v.contiguous()?)?;

        let q = self.separate_heads(&q)?;
        let k = self.separate_heads(&k)?;
        let v = self.separate_heads(&v)?;

        let (_, _, _, c_per_head) = q.dims4()?;
        let attn = (q.matmul(&k.t()?)? / (c_per_head as f64).sqrt())?;
        let attn = candle_nn::ops::softmax_last_dim(&attn)?;

        let out = attn.matmul(&v)?;
        self.recombine_heads(&out)?.apply(&self.out_proj)
    }
}

#[derive(Debug)]
struct TwoWayAttentionBlock {
    self_attn: Attention,
    norm1: LayerNorm,
    cross_attn_token_to_image: Attention,
    norm2: LayerNorm,
    mlp: super::MlpBlock,
    norm3: LayerNorm,
    norm4: LayerNorm,
    cross_attn_image_to_token: Attention,
    skip_first_layer_pe: bool,
}

impl TwoWayAttentionBlock {
    fn new(
        embedding_dim: usize,
        num_heads: usize,
        mlp_dim: usize,
        skip_first_layer_pe: bool,
        vb: VarBuilder,
    ) -> Result<Self> {
        let norm1 = layer_norm(embedding_dim, 1e-5, vb.pp("norm1"))?;
        let norm2 = layer_norm(embedding_dim, 1e-5, vb.pp("norm2"))?;
        let norm3 = layer_norm(embedding_dim, 1e-5, vb.pp("norm3"))?;
        let norm4 = layer_norm(embedding_dim, 1e-5, vb.pp("norm4"))?;
        let self_attn = Attention::new(embedding_dim, num_heads, 1, vb.pp("self_attn"))?;
        let cross_attn_token_to_image = Attention::new(
            embedding_dim,
            num_heads,
            2,
            vb.pp("cross_attn_token_to_image"),
        )?;
        let cross_attn_image_to_token = Attention::new(
            embedding_dim,
            num_heads,
            2,
            vb.pp("cross_attn_image_to_token"),
        )?;
        let mlp = super::MlpBlock::new(
            embedding_dim,
            mlp_dim,
            candle_nn::Activation::Relu,
            vb.pp("mlp"),
        )?;
        Ok(Self {
            self_attn,
            norm1,
            cross_attn_image_to_token,
            norm2,
            mlp,
            norm3,
            norm4,
            cross_attn_token_to_image,
            skip_first_layer_pe,
        })
    }

    fn forward(
        &self,
        queries: &Tensor,
        keys: &Tensor,
        query_pe: &Tensor,
        key_pe: &Tensor,
    ) -> Result<(Tensor, Tensor)> {
        // Self attention block
        let queries = if self.skip_first_layer_pe {
            self.self_attn.forward(queries, queries, queries)?
        } else {
            let q = (queries + query_pe)?;
            let attn_out = self.self_attn.forward(&q, &q, queries)?;
            (queries + attn_out)?
        };
        let queries = self.norm1.forward(&queries)?;

        // Cross attention block, tokens attending to image embedding
        let q = (&queries + query_pe)?;
        let k = (keys + key_pe)?;
        let attn_out = self.cross_attn_token_to_image.forward(&q, &k, keys)?;
        let queries = (&queries + attn_out)?;
        let queries = self.norm2.forward(&queries)?;

        // MLP block
        let mlp_out = self.mlp.forward(&queries);
        let queries = (queries + mlp_out)?;
        let queries = self.norm3.forward(&queries)?;

        // Cross attention block, image embedding attending to tokens
        let q = (&queries + query_pe)?;
        let k = (keys + key_pe)?;
        let attn_out = self.cross_attn_image_to_token.forward(&k, &q, &queries)?;
        let keys = (keys + attn_out)?;
        let keys = self.norm4.forward(&keys)?;

        Ok((queries, keys))
    }
}

#[derive(Debug)]
pub struct TwoWayTransformer {
    layers: Vec<TwoWayAttentionBlock>,
    final_attn_token_to_image: Attention,
    norm_final_attn: LayerNorm,
}

impl TwoWayTransformer {
    pub fn new(
        depth: usize,
        embedding_dim: usize,
        num_heads: usize,
        mlp_dim: usize,
        vb: VarBuilder,
    ) -> Result<Self> {
        let vb_l = vb.pp("layers");
        let mut layers = Vec::with_capacity(depth);
        for i in 0..depth {
            let layer =
                TwoWayAttentionBlock::new(embedding_dim, num_heads, mlp_dim, i == 0, vb_l.pp(i))?;
            layers.push(layer)
        }
        let final_attn_token_to_image = Attention::new(
            embedding_dim,
            num_heads,
            2,
            vb.pp("final_attn_token_to_image"),
        )?;
        let norm_final_attn = layer_norm(embedding_dim, 1e-5, vb.pp("norm_final_attn"))?;
        Ok(Self {
            layers,
            final_attn_token_to_image,
            norm_final_attn,
        })
    }

    pub fn forward(
        &self,
        image_embedding: &Tensor,
        image_pe: &Tensor,
        point_embedding: &Tensor,
    ) -> Result<(Tensor, Tensor)> {
        let image_embedding = image_embedding.flatten_from(2)?.permute((0, 2, 1))?;
        let image_pe = image_pe.flatten_from(2)?.permute((0, 2, 1))?;

        let mut queries = point_embedding.clone();
        let mut keys = image_embedding;

        for layer in self.layers.iter() {
            (queries, keys) = layer.forward(&queries, &keys, point_embedding, &image_pe)?
        }

        let q = (&queries + point_embedding)?;
        let k = (&keys + image_pe)?;
        let attn_out = self.final_attn_token_to_image.forward(&q, &k, &keys)?;
        let queries = (queries + attn_out)?.apply(&self.norm_final_attn)?;

        Ok((queries, keys))
    }
}