use super::embeddings::{TimestepEmbedding, Timesteps};
use super::unet_2d_blocks::*;
use crate::models::with_tracing::{conv2d, Conv2d};
use candle::{Result, Tensor};
use candle_nn as nn;
use candle_nn::Module;
#[derive(Debug, Clone, Copy)]
pub struct BlockConfig {
    pub out_channels: usize,
    pub use_cross_attn: Option<usize>,
    pub attention_head_dim: usize,
}
#[derive(Debug, Clone)]
pub struct UNet2DConditionModelConfig {
    pub center_input_sample: bool,
    pub flip_sin_to_cos: bool,
    pub freq_shift: f64,
    pub blocks: Vec<BlockConfig>,
    pub layers_per_block: usize,
    pub downsample_padding: usize,
    pub mid_block_scale_factor: f64,
    pub norm_num_groups: usize,
    pub norm_eps: f64,
    pub cross_attention_dim: usize,
    pub sliced_attention_size: Option<usize>,
    pub use_linear_projection: bool,
}
impl Default for UNet2DConditionModelConfig {
    fn default() -> Self {
        Self {
            center_input_sample: false,
            flip_sin_to_cos: true,
            freq_shift: 0.,
            blocks: vec![
                BlockConfig {
                    out_channels: 320,
                    use_cross_attn: Some(1),
                    attention_head_dim: 8,
                },
                BlockConfig {
                    out_channels: 640,
                    use_cross_attn: Some(1),
                    attention_head_dim: 8,
                },
                BlockConfig {
                    out_channels: 1280,
                    use_cross_attn: Some(1),
                    attention_head_dim: 8,
                },
                BlockConfig {
                    out_channels: 1280,
                    use_cross_attn: None,
                    attention_head_dim: 8,
                },
            ],
            layers_per_block: 2,
            downsample_padding: 1,
            mid_block_scale_factor: 1.,
            norm_num_groups: 32,
            norm_eps: 1e-5,
            cross_attention_dim: 1280,
            sliced_attention_size: None,
            use_linear_projection: false,
        }
    }
}
#[derive(Debug)]
pub(crate) enum UNetDownBlock {
    Basic(DownBlock2D),
    CrossAttn(CrossAttnDownBlock2D),
}
#[derive(Debug)]
enum UNetUpBlock {
    Basic(UpBlock2D),
    CrossAttn(CrossAttnUpBlock2D),
}
#[derive(Debug)]
pub struct UNet2DConditionModel {
    conv_in: Conv2d,
    time_proj: Timesteps,
    time_embedding: TimestepEmbedding,
    down_blocks: Vec<UNetDownBlock>,
    mid_block: UNetMidBlock2DCrossAttn,
    up_blocks: Vec<UNetUpBlock>,
    conv_norm_out: nn::GroupNorm,
    conv_out: Conv2d,
    span: tracing::Span,
    config: UNet2DConditionModelConfig,
}
impl UNet2DConditionModel {
    pub fn new(
        vs: nn::VarBuilder,
        in_channels: usize,
        out_channels: usize,
        use_flash_attn: bool,
        config: UNet2DConditionModelConfig,
    ) -> Result<Self> {
        let n_blocks = config.blocks.len();
        let b_channels = config.blocks[0].out_channels;
        let bl_channels = config.blocks.last().unwrap().out_channels;
        let bl_attention_head_dim = config.blocks.last().unwrap().attention_head_dim;
        let time_embed_dim = b_channels * 4;
        let conv_cfg = nn::Conv2dConfig {
            padding: 1,
            ..Default::default()
        };
        let conv_in = conv2d(in_channels, b_channels, 3, conv_cfg, vs.pp("conv_in"))?;
        let time_proj = Timesteps::new(b_channels, config.flip_sin_to_cos, config.freq_shift);
        let time_embedding =
            TimestepEmbedding::new(vs.pp("time_embedding"), b_channels, time_embed_dim)?;
        let vs_db = vs.pp("down_blocks");
        let down_blocks = (0..n_blocks)
            .map(|i| {
                let BlockConfig {
                    out_channels,
                    use_cross_attn,
                    attention_head_dim,
                } = config.blocks[i];
                let sliced_attention_size = match config.sliced_attention_size {
                    Some(0) => Some(attention_head_dim / 2),
                    _ => config.sliced_attention_size,
                };
                let in_channels = if i > 0 {
                    config.blocks[i - 1].out_channels
                } else {
                    b_channels
                };
                let db_cfg = DownBlock2DConfig {
                    num_layers: config.layers_per_block,
                    resnet_eps: config.norm_eps,
                    resnet_groups: config.norm_num_groups,
                    add_downsample: i < n_blocks - 1,
                    downsample_padding: config.downsample_padding,
                    ..Default::default()
                };
                if let Some(transformer_layers_per_block) = use_cross_attn {
                    let config = CrossAttnDownBlock2DConfig {
                        downblock: db_cfg,
                        attn_num_head_channels: attention_head_dim,
                        cross_attention_dim: config.cross_attention_dim,
                        sliced_attention_size,
                        use_linear_projection: config.use_linear_projection,
                        transformer_layers_per_block,
                    };
                    let block = CrossAttnDownBlock2D::new(
                        vs_db.pp(&i.to_string()),
                        in_channels,
                        out_channels,
                        Some(time_embed_dim),
                        use_flash_attn,
                        config,
                    )?;
                    Ok(UNetDownBlock::CrossAttn(block))
                } else {
                    let block = DownBlock2D::new(
                        vs_db.pp(&i.to_string()),
                        in_channels,
                        out_channels,
                        Some(time_embed_dim),
                        db_cfg,
                    )?;
                    Ok(UNetDownBlock::Basic(block))
                }
            })
            .collect::<Result<Vec<_>>>()?;
        let mid_transformer_layers_per_block = match config.blocks.last() {
            None => 1,
            Some(block) => block.use_cross_attn.unwrap_or(1),
        };
        let mid_cfg = UNetMidBlock2DCrossAttnConfig {
            resnet_eps: config.norm_eps,
            output_scale_factor: config.mid_block_scale_factor,
            cross_attn_dim: config.cross_attention_dim,
            attn_num_head_channels: bl_attention_head_dim,
            resnet_groups: Some(config.norm_num_groups),
            use_linear_projection: config.use_linear_projection,
            transformer_layers_per_block: mid_transformer_layers_per_block,
            ..Default::default()
        };
        let mid_block = UNetMidBlock2DCrossAttn::new(
            vs.pp("mid_block"),
            bl_channels,
            Some(time_embed_dim),
            use_flash_attn,
            mid_cfg,
        )?;
        let vs_ub = vs.pp("up_blocks");
        let up_blocks = (0..n_blocks)
            .map(|i| {
                let BlockConfig {
                    out_channels,
                    use_cross_attn,
                    attention_head_dim,
                } = config.blocks[n_blocks - 1 - i];
                let sliced_attention_size = match config.sliced_attention_size {
                    Some(0) => Some(attention_head_dim / 2),
                    _ => config.sliced_attention_size,
                };
                let prev_out_channels = if i > 0 {
                    config.blocks[n_blocks - i].out_channels
                } else {
                    bl_channels
                };
                let in_channels = {
                    let index = if i == n_blocks - 1 {
                        0
                    } else {
                        n_blocks - i - 2
                    };
                    config.blocks[index].out_channels
                };
                let ub_cfg = UpBlock2DConfig {
                    num_layers: config.layers_per_block + 1,
                    resnet_eps: config.norm_eps,
                    resnet_groups: config.norm_num_groups,
                    add_upsample: i < n_blocks - 1,
                    ..Default::default()
                };
                if let Some(transformer_layers_per_block) = use_cross_attn {
                    let config = CrossAttnUpBlock2DConfig {
                        upblock: ub_cfg,
                        attn_num_head_channels: attention_head_dim,
                        cross_attention_dim: config.cross_attention_dim,
                        sliced_attention_size,
                        use_linear_projection: config.use_linear_projection,
                        transformer_layers_per_block,
                    };
                    let block = CrossAttnUpBlock2D::new(
                        vs_ub.pp(&i.to_string()),
                        in_channels,
                        prev_out_channels,
                        out_channels,
                        Some(time_embed_dim),
                        use_flash_attn,
                        config,
                    )?;
                    Ok(UNetUpBlock::CrossAttn(block))
                } else {
                    let block = UpBlock2D::new(
                        vs_ub.pp(&i.to_string()),
                        in_channels,
                        prev_out_channels,
                        out_channels,
                        Some(time_embed_dim),
                        ub_cfg,
                    )?;
                    Ok(UNetUpBlock::Basic(block))
                }
            })
            .collect::<Result<Vec<_>>>()?;
        let conv_norm_out = nn::group_norm(
            config.norm_num_groups,
            b_channels,
            config.norm_eps,
            vs.pp("conv_norm_out"),
        )?;
        let conv_out = conv2d(b_channels, out_channels, 3, conv_cfg, vs.pp("conv_out"))?;
        let span = tracing::span!(tracing::Level::TRACE, "unet2d");
        Ok(Self {
            conv_in,
            time_proj,
            time_embedding,
            down_blocks,
            mid_block,
            up_blocks,
            conv_norm_out,
            conv_out,
            span,
            config,
        })
    }
    pub fn forward(
        &self,
        xs: &Tensor,
        timestep: f64,
        encoder_hidden_states: &Tensor,
    ) -> Result<Tensor> {
        let _enter = self.span.enter();
        self.forward_with_additional_residuals(xs, timestep, encoder_hidden_states, None, None)
    }
    pub fn forward_with_additional_residuals(
        &self,
        xs: &Tensor,
        timestep: f64,
        encoder_hidden_states: &Tensor,
        down_block_additional_residuals: Option<&[Tensor]>,
        mid_block_additional_residual: Option<&Tensor>,
    ) -> Result<Tensor> {
        let (bsize, _channels, height, width) = xs.dims4()?;
        let device = xs.device();
        let n_blocks = self.config.blocks.len();
        let num_upsamplers = n_blocks - 1;
        let default_overall_up_factor = 2usize.pow(num_upsamplers as u32);
        let forward_upsample_size =
            height % default_overall_up_factor != 0 || width % default_overall_up_factor != 0;
        let xs = if self.config.center_input_sample {
            ((xs * 2.0)? - 1.0)?
        } else {
            xs.clone()
        };
        let emb = (Tensor::ones(bsize, xs.dtype(), device)? * timestep)?;
        let emb = self.time_proj.forward(&emb)?;
        let emb = self.time_embedding.forward(&emb)?;
        let xs = self.conv_in.forward(&xs)?;
        let mut down_block_res_xs = vec![xs.clone()];
        let mut xs = xs;
        for down_block in self.down_blocks.iter() {
            let (_xs, res_xs) = match down_block {
                UNetDownBlock::Basic(b) => b.forward(&xs, Some(&emb))?,
                UNetDownBlock::CrossAttn(b) => {
                    b.forward(&xs, Some(&emb), Some(encoder_hidden_states))?
                }
            };
            down_block_res_xs.extend(res_xs);
            xs = _xs;
        }
        let new_down_block_res_xs =
            if let Some(down_block_additional_residuals) = down_block_additional_residuals {
                let mut v = vec![];
                for (i, residuals) in down_block_additional_residuals.iter().enumerate() {
                    v.push((&down_block_res_xs[i] + residuals)?)
                }
                v
            } else {
                down_block_res_xs
            };
        let mut down_block_res_xs = new_down_block_res_xs;
        let xs = self
            .mid_block
            .forward(&xs, Some(&emb), Some(encoder_hidden_states))?;
        let xs = match mid_block_additional_residual {
            None => xs,
            Some(m) => (m + xs)?,
        };
        let mut xs = xs;
        let mut upsample_size = None;
        for (i, up_block) in self.up_blocks.iter().enumerate() {
            let n_resnets = match up_block {
                UNetUpBlock::Basic(b) => b.resnets.len(),
                UNetUpBlock::CrossAttn(b) => b.upblock.resnets.len(),
            };
            let res_xs = down_block_res_xs.split_off(down_block_res_xs.len() - n_resnets);
            if i < n_blocks - 1 && forward_upsample_size {
                let (_, _, h, w) = down_block_res_xs.last().unwrap().dims4()?;
                upsample_size = Some((h, w))
            }
            xs = match up_block {
                UNetUpBlock::Basic(b) => b.forward(&xs, &res_xs, Some(&emb), upsample_size)?,
                UNetUpBlock::CrossAttn(b) => b.forward(
                    &xs,
                    &res_xs,
                    Some(&emb),
                    upsample_size,
                    Some(encoder_hidden_states),
                )?,
            };
        }
        let xs = self.conv_norm_out.forward(&xs)?;
        let xs = nn::ops::silu(&xs)?;
        self.conv_out.forward(&xs)
    }
}