1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
use crate::models::vit::{Config, Embeddings, Encoder};
use candle::{DType, Result, Tensor};
use candle_nn::{
    embedding, layer_norm, linear_no_bias, Embedding, LayerNorm, Linear, Module, VarBuilder,
};

fn default_tie_word_embeddings() -> bool {
    true
}
fn default_use_learned_position_embeddings() -> bool {
    true
}

#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct TrOCRConfig {
    pub vocab_size: usize,
    pub d_model: usize,
    pub cross_attention_hidden_size: usize,
    pub decoder_layers: usize,
    pub decoder_attention_heads: usize,
    pub decoder_ffn_dim: usize,
    pub activation_function: candle_nn::Activation,
    pub max_position_embeddings: usize,
    pub dropout: f64,
    pub attention_dropout: f64,
    pub activation_dropout: f64,
    pub decoder_start_token_id: u32,
    pub init_std: f64,
    pub decoder_layerdrop: f64,
    pub use_cache: bool,
    pub scale_embedding: bool,
    pub pad_token_id: usize,
    pub bos_token_id: usize,
    pub eos_token_id: u32,
    pub decoder_vocab_size: Option<usize>,
    #[serde(default = "default_use_learned_position_embeddings")]
    pub use_learned_position_embeddings: bool,
    #[serde(default = "default_tie_word_embeddings")]
    pub tie_word_embeddings: bool,
}

impl Default for TrOCRConfig {
    fn default() -> Self {
        Self {
            vocab_size: 50265,
            d_model: 1024,
            cross_attention_hidden_size: 768,
            decoder_layers: 12,
            decoder_attention_heads: 16,
            decoder_ffn_dim: 4096,
            activation_function: candle_nn::Activation::Gelu,
            max_position_embeddings: 512,
            dropout: 0.1,
            attention_dropout: 0.0,
            activation_dropout: 0.0,
            decoder_start_token_id: 2,
            init_std: 0.02,
            decoder_layerdrop: 0.0,
            use_cache: true,
            scale_embedding: false,
            pad_token_id: 1,
            bos_token_id: 0,
            eos_token_id: 2,
            decoder_vocab_size: Some(50265),
            use_learned_position_embeddings: true,
            tie_word_embeddings: true,
        }
    }
}

#[derive(Debug, Clone)]
struct TrOCRLearnedPositionalEmbedding {
    offset: usize,
    weights: Embedding,
}

impl TrOCRLearnedPositionalEmbedding {
    fn load(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
        let offset: usize = 2;
        let num_embeddings = cfg.max_position_embeddings;
        let embedding_dim = cfg.d_model;
        let weights = embedding(num_embeddings + offset, embedding_dim, vb)?;

        Ok(Self { offset, weights })
    }

    fn new_sinusoidal(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
        // https://github.com/huggingface/transformers/blob/58e3d23e97078f361a533b9ec4a6a2de674ea52a/src/transformers/models/trocr/modeling_trocr.py#L81
        let embedding_dim = cfg.d_model;
        let half_dim = embedding_dim / 2;
        let num_positions = cfg.max_position_embeddings + cfg.pad_token_id + 1;
        let dev = vb.device();
        let inv_freq: Vec<_> = (0..half_dim)
            .map(|i| 1f32 / 10000f32.powf(i as f32 / (half_dim - 1) as f32))
            .collect();
        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
        let t = Tensor::arange(0u32, num_positions as u32, dev)?
            .to_dtype(DType::F32)?
            .reshape((num_positions, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        let emb = Tensor::cat(&[freqs.sin()?, freqs.cos()?], 1)?;
        let emb = Tensor::cat(
            &[
                emb.narrow(0, 0, cfg.pad_token_id)?,
                Tensor::zeros((1, embedding_dim), DType::F32, dev)?,
                emb.narrow(0, cfg.pad_token_id + 1, cfg.max_position_embeddings)?,
            ],
            0,
        )?
        .contiguous()?;
        let emb = Embedding::new(emb, embedding_dim);
        Ok(Self {
            offset: cfg.pad_token_id + 1,
            weights: emb,
        })
    }

    fn forward(&mut self, input_ids: &Tensor, past_key_values_length: u32) -> Result<Tensor> {
        let (b_sz, seq_len) = input_ids.dims2()?;

        let positions = Tensor::arange(
            past_key_values_length,
            seq_len as u32 + past_key_values_length,
            input_ids.device(),
        )?
        .expand((b_sz, seq_len))?;

        let positions =
            positions.broadcast_add(&Tensor::new(self.offset as u32, input_ids.device())?)?;
        self.weights.forward(&positions)
    }
}

#[derive(Debug, Clone)]
struct TrOCRAttention {
    head_dim: usize,
    num_heads: usize,
    is_decoder: bool,
    scaling: f64,
    k_proj: Linear,
    v_proj: Linear,
    q_proj: Linear,
    out_proj: Linear,
    kv_cache: Option<(Tensor, Tensor)>,
}

impl TrOCRAttention {
    fn load(
        vb: VarBuilder,
        cfg: &TrOCRConfig,
        kdim: Option<usize>,
        vdim: Option<usize>,
    ) -> Result<Self> {
        let embed_dim = cfg.d_model;
        let num_heads = cfg.decoder_attention_heads;
        let head_dim = embed_dim / num_heads;
        let kdim = kdim.unwrap_or(embed_dim);
        let vdim = vdim.unwrap_or(embed_dim);

        let k_proj = linear_no_bias(kdim, embed_dim, vb.pp("k_proj"))?;
        let v_proj = linear_no_bias(vdim, embed_dim, vb.pp("v_proj"))?;
        let q_proj = linear_no_bias(embed_dim, embed_dim, vb.pp("q_proj"))?;

        let out_proj = linear_no_bias(embed_dim, embed_dim, vb.pp("out_proj"))?;
        Ok(Self {
            head_dim,
            num_heads,
            is_decoder: true,
            scaling: 1. / (head_dim as f64).sqrt(),
            k_proj,
            v_proj,
            q_proj,
            out_proj,
            kv_cache: None,
        })
    }

    fn reset_kv_cache(&mut self) {
        self.kv_cache = None
    }

    fn _shape(&self, tensor: &Tensor, bsz: usize) -> Result<Tensor> {
        tensor
            .reshape((bsz, (), self.num_heads, self.head_dim))?
            .transpose(1, 2)?
            .contiguous()
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        kv_states: Option<&Tensor>,
        attn_mask: Option<&Tensor>,
    ) -> Result<Tensor> {
        let (b_sz, tgt_len, _) = xs.dims3()?;
        let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
        let (key_states, value_states) = match kv_states {
            None => {
                let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
                let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
                if self.is_decoder {
                    let kv_states = match &self.kv_cache {
                        None => (key_states, value_states),
                        Some((p_key_states, p_value_states)) => {
                            let key_states = Tensor::cat(&[p_key_states, &key_states], 2)?;
                            let value_states = Tensor::cat(&[p_value_states, &value_states], 2)?;
                            (key_states, value_states)
                        }
                    };
                    self.kv_cache = Some(kv_states.clone());
                    kv_states
                } else {
                    (key_states, value_states)
                }
            }
            Some(kv_states) => {
                let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
                let value_states = self._shape(&kv_states.apply(&self.v_proj)?, b_sz)?;
                (key_states, value_states)
            }
        };
        let proj_shape = (b_sz * self.num_heads, (), self.head_dim);
        let query_states = self._shape(&query_states, b_sz)?.reshape(proj_shape)?;
        let key_states = key_states.reshape(proj_shape)?;
        let value_states = value_states.reshape(proj_shape)?;
        let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
        let attn_weights = match attn_mask {
            None => attn_weights,
            Some(attn_mask) => attn_weights.broadcast_add(attn_mask)?,
        };
        let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
        let attn_output = attn_probs.matmul(&value_states)?;
        attn_output
            .reshape((b_sz, self.num_heads, tgt_len, self.head_dim))?
            .transpose(1, 2)?
            .reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
            .apply(&self.out_proj)
    }
}

#[derive(Debug, Clone)]
struct TrOCRDecoderLayer {
    self_attn: TrOCRAttention,
    activation_fn: candle_nn::Activation,
    self_attn_layer_norm: LayerNorm,
    encoder_attn: TrOCRAttention,
    encoder_attn_layer_norm: LayerNorm,
    fc1: Linear,
    fc2: Linear,
    final_layer_norm: LayerNorm,
}

impl TrOCRDecoderLayer {
    fn load(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
        let embed_dim = cfg.d_model;
        let self_attn = TrOCRAttention::load(vb.pp("self_attn"), cfg, None, None)?;
        let self_attn_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("self_attn_layer_norm"))?;
        let encoder_attn = TrOCRAttention::load(
            vb.pp("encoder_attn"),
            cfg,
            Some(cfg.cross_attention_hidden_size),
            Some(cfg.cross_attention_hidden_size),
        )?;
        let encoder_attn_layer_norm =
            layer_norm(embed_dim, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
        let fc1 = linear_no_bias(embed_dim, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
        let fc2 = linear_no_bias(cfg.decoder_ffn_dim, embed_dim, vb.pp("fc2"))?;
        let final_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("final_layer_norm"))?;
        Ok(Self {
            self_attn,
            activation_fn: cfg.activation_function,
            self_attn_layer_norm,
            encoder_attn,
            encoder_attn_layer_norm,
            fc1,
            fc2,
            final_layer_norm,
        })
    }

    fn reset_kv_cache(&mut self) {
        self.self_attn.reset_kv_cache();
    }

    fn forward(
        &mut self,
        xs: &Tensor,
        attention_mask: &Tensor,
        encoder_hidden_states: Option<&Tensor>,
    ) -> Result<Tensor> {
        let residual = xs.clone();
        let xs = self.self_attn.forward(xs, None, Some(attention_mask))?;
        let xs = (xs + residual)?;
        let mut xs = self.self_attn_layer_norm.forward(&xs)?;

        if let Some(encoder_hidden_states) = &encoder_hidden_states {
            let residual = xs.clone();
            let encoder_attention_mask = attention_mask.clone(); // TODO
            xs = self.encoder_attn.forward(
                &xs,
                Some(encoder_hidden_states),
                Some(&encoder_attention_mask),
            )?;
            xs = (xs + residual)?;
            xs = self.encoder_attn_layer_norm.forward(&xs)?
        }

        let residual = xs.clone();
        let xs = self.fc1.forward(&xs)?;
        let xs = self.activation_fn.forward(&xs)?;
        let xs = self.fc2.forward(&xs)?;
        let xs = (xs + residual)?;
        let xs = self.final_layer_norm.forward(&xs)?;

        Ok(xs)
    }
}

#[derive(Debug, Clone)]
pub struct TrOCRDecoder {
    layers: Vec<TrOCRDecoderLayer>,
    embed_scale: Option<f64>,
    embed_tokens: Embedding,
    embed_positions: TrOCRLearnedPositionalEmbedding,
}

impl TrOCRDecoder {
    fn new(cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
        let vb = vb.pp("decoder.model.decoder");

        let embed_tokens = embedding(cfg.vocab_size, cfg.d_model, vb.pp("embed_tokens"))?;
        let embed_positions = if cfg.use_learned_position_embeddings {
            TrOCRLearnedPositionalEmbedding::load(vb.pp("embed_positions"), cfg)?
        } else {
            TrOCRLearnedPositionalEmbedding::new_sinusoidal(vb.pp("embed_positions"), cfg)?
        };
        let mut layers = Vec::with_capacity(cfg.decoder_layers);
        let vb_l = vb.pp("layers");
        for idx in 0..cfg.decoder_layers {
            let layer = TrOCRDecoderLayer::load(vb_l.pp(idx), cfg)?;
            layers.push(layer)
        }
        let embed_scale = if cfg.scale_embedding {
            Some((cfg.d_model as f64).sqrt())
        } else {
            None
        };

        Ok(Self {
            layers,
            embed_scale,
            embed_tokens,
            embed_positions,
        })
    }

    fn reset_kv_cache(&mut self) {
        self.layers.iter_mut().for_each(|l| l.reset_kv_cache())
    }

    pub fn forward(
        &mut self,
        xs: &Tensor,
        encoder_xs: Option<&Tensor>,
        past_kv_len: usize,
        attn_mask: &Tensor,
    ) -> Result<Tensor> {
        let embed_pos = self.embed_positions.forward(xs, past_kv_len as u32)?;
        let xs = xs.apply(&self.embed_tokens)?;

        let xs = match self.embed_scale {
            None => xs,
            Some(scale) => (xs * scale)?,
        };

        let mut xs = xs.broadcast_add(&embed_pos)?;

        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, attn_mask, encoder_xs)?;
        }
        Ok(xs)
    }
}

#[derive(Debug, Clone)]
pub struct TrOCREncoder {
    embeddings: Embeddings,
    encoder: Encoder,
    layernorm: LayerNorm,
}

impl TrOCREncoder {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb_v = vb.pp("encoder");

        let embeddings = Embeddings::new(cfg, false, vb_v.pp("embeddings"))?;

        let encoder = Encoder::new(cfg, vb_v.pp("encoder"))?;
        let layernorm = layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb_v.pp("layernorm"))?;

        Ok(Self {
            embeddings,
            encoder,
            layernorm,
        })
    }

    pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let embedding_output = self.embeddings.forward(xs, None, false)?;
        let encoder_outputs = self.encoder.forward(&embedding_output)?;

        self.layernorm.forward(&encoder_outputs)
    }
}

#[derive(Debug, Clone)]
pub struct TrOCRForCausalLM {
    decoder: TrOCRDecoder,
    output_projection: Linear,
}

impl TrOCRForCausalLM {
    pub fn new(decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
        let decoder = TrOCRDecoder::new(decoder_cfg, vb.clone())?;
        let output_projection = if decoder_cfg.tie_word_embeddings {
            candle_nn::Linear::new(decoder.embed_tokens.embeddings().clone(), None)
        } else {
            candle_nn::linear_no_bias(
                decoder_cfg.d_model,
                decoder_cfg.vocab_size,
                vb.pp("decoder.output_projection"),
            )?
        };
        Ok(Self {
            decoder,
            output_projection,
        })
    }

    pub fn forward(
        &mut self,
        xs: &Tensor,
        encoder_xs: Option<&Tensor>,
        past_kv_len: usize,
        attn_mask: &Tensor,
    ) -> Result<Tensor> {
        let xs = self
            .decoder
            .forward(xs, encoder_xs, past_kv_len, attn_mask)?;
        let xs = xs.apply(&self.output_projection)?;

        Ok(xs)
    }

    fn reset_kv_cache(&mut self) {
        self.decoder.reset_kv_cache();
    }
}

#[derive(Debug, Clone)]
pub struct TrOCRModel {
    encoder: TrOCREncoder,
    decoder: TrOCRForCausalLM,
}

impl TrOCRModel {
    pub fn new(encoder_cfg: &Config, decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
        let encoder = TrOCREncoder::new(encoder_cfg, vb.clone())?;
        let decoder = TrOCRForCausalLM::new(decoder_cfg, vb)?;
        Ok(Self { encoder, decoder })
    }

    pub fn encoder(&mut self) -> &mut TrOCREncoder {
        &mut self.encoder
    }

    pub fn decoder(&mut self) -> &mut TrOCRForCausalLM {
        &mut self.decoder
    }

    pub fn decode(
        &mut self,
        xs: &Tensor,
        encoder_xs: &Tensor,
        past_kv_len: usize,
    ) -> Result<Tensor> {
        let seq_len = xs.dim(1)?;
        let mask: Vec<_> = (0..seq_len)
            .flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
            .collect();
        let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;

        self.decoder
            .forward(xs, Some(encoder_xs), past_kv_len, &mask)
    }

    pub fn reset_kv_cache(&mut self) {
        self.decoder.reset_kv_cache();
    }
}