1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Audio processing code, adapted from whisper.cpp
// https://github.com/ggerganov/whisper.cpp

use candle::utils::get_num_threads;
use std::sync::Arc;
use std::thread;

pub trait Float:
    num_traits::Float + num_traits::FloatConst + num_traits::NumAssign + Send + Sync
{
}

impl Float for f32 {}
impl Float for f64 {}

// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
fn fft<T: Float>(inp: &[T]) -> Vec<T> {
    let n = inp.len();
    let zero = T::zero();
    if n == 1 {
        return vec![inp[0], zero];
    }
    if n % 2 == 1 {
        return dft(inp);
    }
    let mut out = vec![zero; n * 2];

    let mut even = Vec::with_capacity(n / 2);
    let mut odd = Vec::with_capacity(n / 2);

    for (i, &inp) in inp.iter().enumerate() {
        if i % 2 == 0 {
            even.push(inp)
        } else {
            odd.push(inp);
        }
    }

    let even_fft = fft(&even);
    let odd_fft = fft(&odd);

    let two_pi = T::PI() + T::PI();
    let n_t = T::from(n).unwrap();
    for k in 0..n / 2 {
        let k_t = T::from(k).unwrap();
        let theta = two_pi * k_t / n_t;
        let re = theta.cos();
        let im = -theta.sin();

        let re_odd = odd_fft[2 * k];
        let im_odd = odd_fft[2 * k + 1];

        out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
        out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;

        out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
        out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
    }
    out
}

// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
fn dft<T: Float>(inp: &[T]) -> Vec<T> {
    let zero = T::zero();
    let n = inp.len();
    let two_pi = T::PI() + T::PI();

    let mut out = Vec::with_capacity(2 * n);
    let n_t = T::from(n).unwrap();
    for k in 0..n {
        let k_t = T::from(k).unwrap();
        let mut re = zero;
        let mut im = zero;

        for (j, &inp) in inp.iter().enumerate() {
            let j_t = T::from(j).unwrap();
            let angle = two_pi * k_t * j_t / n_t;
            re += inp * angle.cos();
            im -= inp * angle.sin();
        }

        out.push(re);
        out.push(im);
    }
    out
}

#[allow(clippy::too_many_arguments)]
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
fn log_mel_spectrogram_w<T: Float>(
    ith: usize,
    hann: &[T],
    samples: &[T],
    filters: &[T],
    fft_size: usize,
    fft_step: usize,
    speed_up: bool,
    n_len: usize,
    n_mel: usize,
    n_threads: usize,
) -> Vec<T> {
    let n_fft = if speed_up {
        1 + fft_size / 4
    } else {
        1 + fft_size / 2
    };

    let zero = T::zero();
    let half = T::from(0.5).unwrap();
    let mut fft_in = vec![zero; fft_size];
    let mut mel = vec![zero; n_len * n_mel];
    let n_samples = samples.len();
    let end = std::cmp::min(n_samples / fft_step + 1, n_len);

    for i in (ith..end).step_by(n_threads) {
        let offset = i * fft_step;

        // apply Hanning window
        for j in 0..std::cmp::min(fft_size, n_samples - offset) {
            fft_in[j] = hann[j] * samples[offset + j];
        }

        // fill the rest with zeros
        if n_samples - offset < fft_size {
            fft_in[n_samples - offset..].fill(zero);
        }

        // FFT
        let mut fft_out: Vec<T> = fft(&fft_in);

        // Calculate modulus^2 of complex numbers
        for j in 0..fft_size {
            fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
        }
        for j in 1..fft_size / 2 {
            let v = fft_out[fft_size - j];
            fft_out[j] += v;
        }

        if speed_up {
            // scale down in the frequency domain results in a speed up in the time domain
            for j in 0..n_fft {
                fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
            }
        }

        // mel spectrogram
        for j in 0..n_mel {
            let mut sum = zero;
            let mut k = 0;
            // Unroll loop
            while k < n_fft.saturating_sub(3) {
                sum += fft_out[k] * filters[j * n_fft + k]
                    + fft_out[k + 1] * filters[j * n_fft + k + 1]
                    + fft_out[k + 2] * filters[j * n_fft + k + 2]
                    + fft_out[k + 3] * filters[j * n_fft + k + 3];
                k += 4;
            }
            // Handle remainder
            while k < n_fft {
                sum += fft_out[k] * filters[j * n_fft + k];
                k += 1;
            }
            mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
        }
    }
    mel
}

pub fn log_mel_spectrogram_<T: Float>(
    samples: &[T],
    filters: &[T],
    fft_size: usize,
    fft_step: usize,
    n_mel: usize,
    speed_up: bool,
) -> Vec<T> {
    let zero = T::zero();
    let two_pi = T::PI() + T::PI();
    let half = T::from(0.5).unwrap();
    let one = T::from(1.0).unwrap();
    let four = T::from(4.0).unwrap();
    let fft_size_t = T::from(fft_size).unwrap();

    let hann: Vec<T> = (0..fft_size)
        .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
        .collect();
    let n_len = samples.len() / fft_step;

    // pad audio with at least one extra chunk of zeros
    let pad = 100 * super::CHUNK_LENGTH / 2;
    let n_len = if n_len % pad != 0 {
        (n_len / pad + 1) * pad
    } else {
        n_len
    };
    let n_len = n_len + pad;
    let samples = {
        let mut samples_padded = samples.to_vec();
        let to_add = n_len * fft_step - samples.len();
        samples_padded.extend(std::iter::repeat(zero).take(to_add));
        samples_padded
    };

    // ensure that the number of threads is even and less than 12
    let n_threads = std::cmp::min(get_num_threads() - get_num_threads() % 2, 12);

    let hann = Arc::new(hann);
    let samples = Arc::new(samples);
    let filters = Arc::new(filters);

    // use scope to allow for non static references to be passed to the threads
    // and directly collect the results into a single vector
    let all_outputs = thread::scope(|s| {
        (0..n_threads)
            // create threads and return their handles
            .map(|thread_id| {
                let hann = Arc::clone(&hann);
                let samples = Arc::clone(&samples);
                let filters = Arc::clone(&filters);
                // spawn new thread and start work
                s.spawn(move || {
                    log_mel_spectrogram_w(
                        thread_id, &hann, &samples, &filters, fft_size, fft_step, speed_up, n_len,
                        n_mel, n_threads,
                    )
                })
            })
            .collect::<Vec<_>>()
            .into_iter()
            // wait for each thread to finish and collect their results
            .map(|handle| handle.join().expect("Thread failed"))
            .collect::<Vec<_>>()
    });

    let l = all_outputs[0].len();
    let mut mel = vec![zero; l];

    // iterate over mel spectrogram segments, dividing work by threads.
    for segment_start in (0..l).step_by(n_threads) {
        // go through each thread's output.
        for thread_output in all_outputs.iter() {
            // add each thread's piece to our mel spectrogram.
            for offset in 0..n_threads {
                let mel_index = segment_start + offset; // find location in mel.
                if mel_index < mel.len() {
                    // Make sure we don't go out of bounds.
                    mel[mel_index] += thread_output[mel_index];
                }
            }
        }
    }

    let mmax = mel
        .iter()
        .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
        .copied()
        .unwrap_or(zero)
        - T::from(8).unwrap();
    for m in mel.iter_mut() {
        let v = T::max(*m, mmax);
        *m = v / four + one
    }
    mel
}

pub fn pcm_to_mel<T: Float>(cfg: &super::Config, samples: &[T], filters: &[T]) -> Vec<T> {
    log_mel_spectrogram_(
        samples,
        filters,
        super::N_FFT,
        super::HOP_LENGTH,
        cfg.num_mel_bins,
        false,
    )
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_fft() {
        let input = vec![0.0, 1.0, 0.0, 0.0];
        let output = fft(&input);
        assert_eq!(
            output,
            vec![
                1.0,
                0.0,
                6.123233995736766e-17,
                -1.0,
                -1.0,
                0.0,
                -6.123233995736766e-17,
                1.0
            ]
        );
    }

    #[test]
    fn test_dft() {
        let input = vec![0.0, 1.0, 0.0, 0.0];
        let output = dft(&input);
        assert_eq!(
            output,
            vec![
                1.0,
                0.0,
                6.123233995736766e-17,
                -1.0,
                -1.0,
                -1.2246467991473532e-16,
                -1.8369701987210297e-16,
                1.0
            ]
        );
    }

    #[test]
    fn test_log_mel_spectrogram() {
        let samples = vec![0.0; 1000];
        let filters = vec![0.0; 1000];
        let output = log_mel_spectrogram_(&samples, &filters, 100, 10, 10, false);
        assert_eq!(output.len(), 30_000);
    }

    #[test]
    fn test_tiny_log_mel_spectrogram() {
        let samples = vec![0.0; 100];
        let filters = vec![0.0; 100];
        let output = log_mel_spectrogram_(&samples, &filters, 20, 2, 2, false);
        assert_eq!(output.len(), 6_000);
    }
}