1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
use std::io::Cursor;
use candle_core::{DType, Device, Result, Tensor};
use image::{DynamicImage, ImageBuffer, ImageResult, Rgb};
use image::io::Reader as ImageReader;
use image::imageops::FilterType;
#[cfg(test)]
use mockall::automock;
/// A trait for device utilities. Primarily used for DI & mocking in tests.
#[cfg_attr(test, automock)]
pub trait DeviceUtils {
fn cuda_is_available(&self) -> bool;
fn metal_is_available(&self) -> bool;
}
/// A default implementation of the [`DeviceUtils`] trait.
/// This implementation uses the [`candle_core`] crate to check if CUDA
/// and Metal are available on the device (requires the `cuda` or `metal` features to be enabled).
pub struct DefaultDeviceUtils;
impl DeviceUtils for DefaultDeviceUtils {
fn cuda_is_available(&self) -> bool {
candle_core::utils::cuda_is_available()
}
fn metal_is_available(&self) -> bool {
candle_core::utils::metal_is_available()
}
}
/// Selects the computing device based on the given preferences.
///
/// # Arguments
///
/// * `cpu` - A boolean indicating whether CPU is preferred over GPU.
/// * `device_utils` - An implementation of the [`DeviceUtils`] trait.
///
/// # Returns
///
/// Returns a [`Result`] containing the selected [`Device`] if successful, or an error if the selection fails.
///
/// # Examples
///
/// ```
/// // Select CPU as the computing device.
/// let device: Device = device(true, &DefaultDeviceUtils).unwrap();
/// assert!(device.is_cpu());
///
/// // Select GPU (CUDA) as the computing device.
/// // This example assumes that the `cuda` feature is enabled.
/// let device: Device = device(false, &DefaultDeviceUtils).unwrap();
/// assert!(matches!(device, Device::Cuda(_)));
/// ```
pub fn device(cpu: bool, utils: &impl DeviceUtils) -> Result<Device> {
if cpu {
return Ok(Device::Cpu);
}
if utils.cuda_is_available() {
return Device::new_cuda(0);
}
if utils.metal_is_available() {
return Device::new_metal(0);
}
if cfg!(all(target_os = "macos", target_arch = "aarch64")) {
tracing::info!(
"Running on CPU, to run on GPU (metal), build this example with `--features metal`"
);
} else {
tracing::info!(
"Running on CPU, to run on GPU (CUDA), build this example with `--features cuda`"
);
}
Ok(Device::Cpu)
}
/// Processes an image from raw bytes into an [`ImageBuffer`] of RGB values.
///
/// This function takes a byte slice representing an image, reads it into a [`DynamicImage`],
/// resizes it to a 384x384 image using the Triangle filter, and then converts it to an [`ImageBuffer`]
/// of RGB values.
///
/// # Arguments
///
/// * `image_bytes` - A byte slice representing the image to be processed.
///
/// # Returns
///
/// * [`ImageResult<ImageBuffer<Rgb<u8>, Vec<u8>>>`] - An [`ImageResult`] containing the processed [`ImageBuffer`],
/// or an [`image::ImageError`] if the image could not be processed.
///
/// # Examples
///
/// ```
/// let image_bytes: Vec<u8> = fs::read("path/to/image.jpg")?;
/// let image_buffer: ImageBuffer<Rgb<u8>, Vec<u8>> = process_image(&image_bytes)?;
/// image_buffer.save("path/to/save/processed_image.jpg")?;
/// ```
pub fn process_image(image_bytes: &[u8]) -> ImageResult<ImageBuffer<Rgb<u8>, Vec<u8>>> {
let image_cursor: Cursor<&[u8]> = Cursor::new(image_bytes);
let image: DynamicImage = ImageReader::new(image_cursor)
.with_guessed_format()?
.decode()?;
let image_buf: ImageBuffer<Rgb<u8>, Vec<u8>> = image
.resize_to_fill(384, 384, FilterType::Triangle)
.to_rgb8();
Ok(image_buf)
}
/// Creates a tensor from a byte slice representing pixel data.
///
/// This function takes a byte slice and a [`Device`], creates a tensor from the raw buffer,
/// permutes the dimensions, and then normalizes the tensor by subtracting the mean and dividing
/// by the standard deviation.
///
/// # Arguments
///
/// * `pixels` - A byte slice representing the pixel data.
/// * `device` - A [`Device`] to which the tensor will be allocated.
///
/// # Returns
///
/// * [`Result<Tensor>`] - A [`Result`] containing the created [`Tensor`], or an error if the tensor could not be created.
///
/// # Examples
///
/// ```
/// let image: DynamicImage = ImageReader::open("path/to/image.jpg")?
/// .decode()?;
///
/// let image_raw_buf: Vec<u8> = image.to_rgb8().into_raw();
/// let tensor: Tensor = create_tensor(&image_raw_buf, &Device::Cpu)?;
///
/// assert_eq!(tensor.shape().dims(), &[3, 384, 384]);
/// ```
pub fn create_tensor(pixels: &[u8], device: &Device) -> Result<Tensor> {
let data = Tensor::from_raw_buffer(pixels, DType::U8, &[384, 384, 3], device)?
.permute((2, 0, 1))?;
let mean = Tensor::new(&[0.48145466_f32, 0.4578275, 0.40821073], device)?
.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.26862954_f32, 0.2613026, 0.2757771], device)?
.reshape((3, 1, 1))?;
// Normalize the data tensor by subtracting the mean and dividing by the standard deviation
(data.to_dtype(DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
#[cfg(test)]
mod tests {
use super::*;
use image::{ImageFormat, ImageError};
#[test]
fn test_select_computing_device_cpu_preference() {
// WHEN
let device: Device = device(true, &DefaultDeviceUtils).unwrap();
// THEN
assert!(device.is_cpu());
}
#[test]
fn test_select_computing_device_no_cpu_preference_no_cuda_no_metal() {
// GIVEN
let mut mock_device_utils = MockDeviceUtils::new();
mock_device_utils
.expect_cuda_is_available()
.times(1)
.return_const(false);
mock_device_utils
.expect_metal_is_available()
.times(1)
.return_const(false);
// WHEN
let device: Device = device(false, &mock_device_utils).unwrap();
// THEN
assert!(device.is_cpu());
}
#[test]
#[ignore = "Requires a 'cuda' feature to be enabled"]
fn test_select_computing_device_no_cpu_preference_cuda_available() {
if candle_core::utils::cuda_is_available() {
// GIVEN
let mut mock_device_utils = MockDeviceUtils::new();
mock_device_utils
.expect_cuda_is_available()
.times(1)
.return_const(true);
mock_device_utils
.expect_metal_is_available()
.times(0);
// WHEN
let device: Device = device(false, &mock_device_utils).unwrap();
// THEN
assert!(device.is_cuda());
} else {
eprintln!("CUDA is not available on this device. Skipping the test.");
}
}
#[test]
#[ignore = "Requires a 'metal' feature to be enabled"]
fn test_select_computing_device_no_cpu_preference_metal_available() {
if candle_core::utils::metal_is_available() {
// GIVEN
let mut mock_device_utils = MockDeviceUtils::new();
mock_device_utils
.expect_cuda_is_available()
.times(1)
.return_const(false);
mock_device_utils
.expect_metal_is_available()
.times(1)
.return_const(true);
// WHEN
let device: Device = device(false, &mock_device_utils).unwrap();
// THEN
assert!(device.is_metal());
} else {
eprintln!("Metal is not available on this device. Skipping the test.");
}
}
#[test]
fn test_process_image_ok() {
// GIVEN
let input_image: ImageBuffer<Rgb<u16>, Vec<u16>> =
ImageBuffer::from_par_fn(800, 800, |_, y| {
if y < 400 {
Rgb([u16::MAX, 0, 0])
} else {
Rgb([0, 0, 0])
}
});
let mut image_bytes: Cursor<Vec<u8>> = Cursor::new(Vec::new());
input_image
.write_to(&mut image_bytes, ImageFormat::Png)
.unwrap();
// WHEN
let image_buf: ImageBuffer<Rgb<u8>, Vec<u8>> = process_image(image_bytes.get_ref()).unwrap();
// THEN
assert_eq!(image_buf.dimensions(), (384, 384));
assert_eq!(image_buf.get_pixel(0, 0)[0], u8::MAX);
}
#[test]
fn test_process_image_invalid_format() {
// GIVEN
let image_bytes: &[u8] = &[0, 1, 2, 3, 4, 5];
// WHEN
let processing_result: ImageResult<ImageBuffer<Rgb<u8>, Vec<u8>>> = process_image(image_bytes);
// THEN
assert!(processing_result.is_err());
assert!(matches!(
processing_result.unwrap_err(),
ImageError::Unsupported(_),
));
}
#[test]
fn test_process_image_fail_decode() {
// GIVEN
let mut image_bytes: Vec<u8> = vec![137, 80, 78, 71, 13, 10, 26, 10]; // PNG header
image_bytes.extend_from_slice(&[0; 100]); // Random data
// WHEN
let processing_result: ImageResult<ImageBuffer<Rgb<u8>, Vec<u8>>> = process_image(&image_bytes);
// THEN
assert!(processing_result.is_err());
assert!(matches!(
processing_result.unwrap_err(),
ImageError::Decoding(_),
));
}
#[test]
fn test_create_tensor_ok() {
// GIVEN
let pixels: Vec<u8> = vec![0; 384 * 384 * 3];
// WHEN
let tensor: Tensor = create_tensor(&pixels, &Device::Cpu).unwrap();
// THEN
assert_eq!(tensor.shape().dims(), &[3, 384, 384]);
}
}