1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
//! Encoding of AVIF images.
///
/// The [AVIF] specification defines an image derivative of the AV1 bitstream, an open video codec.
///
/// [AVIF]: https://aomediacodec.github.io/av1-avif/
use std::borrow::Cow;
use std::cmp::min;
use std::io::Write;
use crate::buffer::ConvertBuffer;
use crate::color::{FromColor, Luma, LumaA, Rgb, Rgba};
use crate::error::{
EncodingError, ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
};
use crate::{ExtendedColorType, ImageBuffer, ImageEncoder, ImageFormat, Pixel};
use crate::{ImageError, ImageResult};
use bytemuck::{try_cast_slice, try_cast_slice_mut, Pod, PodCastError};
use num_traits::Zero;
use ravif::{Encoder, Img, RGB8, RGBA8};
use rgb::AsPixels;
/// AVIF Encoder.
///
/// Writes one image into the chosen output.
pub struct AvifEncoder<W> {
inner: W,
encoder: Encoder,
}
/// An enumeration over supported AVIF color spaces
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum ColorSpace {
/// sRGB colorspace
Srgb,
/// BT.709 colorspace
Bt709,
}
impl ColorSpace {
fn to_ravif(self) -> ravif::ColorSpace {
match self {
Self::Srgb => ravif::ColorSpace::RGB,
Self::Bt709 => ravif::ColorSpace::YCbCr,
}
}
}
enum RgbColor<'buf> {
Rgb8(Img<&'buf [RGB8]>),
Rgba8(Img<&'buf [RGBA8]>),
}
impl<W: Write> AvifEncoder<W> {
/// Create a new encoder that writes its output to `w`.
pub fn new(w: W) -> Self {
AvifEncoder::new_with_speed_quality(w, 4, 80) // `cavif` uses these defaults
}
/// Create a new encoder with a specified speed and quality that writes its output to `w`.
/// `speed` accepts a value in the range 1-10, where 1 is the slowest and 10 is the fastest.
/// Slower speeds generally yield better compression results.
/// `quality` accepts a value in the range 1-100, where 1 is the worst and 100 is the best.
pub fn new_with_speed_quality(w: W, speed: u8, quality: u8) -> Self {
// Clamp quality and speed to range
let quality = min(quality, 100);
let speed = min(speed, 10);
let encoder = Encoder::new()
.with_quality(f32::from(quality))
.with_alpha_quality(f32::from(quality))
.with_speed(speed)
.with_depth(Some(8));
AvifEncoder { inner: w, encoder }
}
/// Encode with the specified `color_space`.
pub fn with_colorspace(mut self, color_space: ColorSpace) -> Self {
self.encoder = self
.encoder
.with_internal_color_space(color_space.to_ravif());
self
}
/// Configures `rayon` thread pool size.
/// The default `None` is to use all threads in the default `rayon` thread pool.
pub fn with_num_threads(mut self, num_threads: Option<usize>) -> Self {
self.encoder = self.encoder.with_num_threads(num_threads);
self
}
}
impl<W: Write> ImageEncoder for AvifEncoder<W> {
/// Encode image data with the indicated color type.
///
/// The encoder currently requires all data to be RGBA8, it will be converted internally if
/// necessary. When data is suitably aligned, i.e. u16 channels to two bytes, then the
/// conversion may be more efficient.
#[track_caller]
fn write_image(
mut self,
data: &[u8],
width: u32,
height: u32,
color: ExtendedColorType,
) -> ImageResult<()> {
let expected_buffer_len = color.buffer_size(width, height);
assert_eq!(
expected_buffer_len,
data.len() as u64,
"Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image",
data.len(),
);
self.set_color(color);
// `ravif` needs strongly typed data so let's convert. We can either use a temporarily
// owned version in our own buffer or zero-copy if possible by using the input buffer.
// This requires going through `rgb`.
let mut fallback = vec![]; // This vector is used if we need to do a color conversion.
let result = match Self::encode_as_img(&mut fallback, data, width, height, color)? {
RgbColor::Rgb8(buffer) => self.encoder.encode_rgb(buffer),
RgbColor::Rgba8(buffer) => self.encoder.encode_rgba(buffer),
};
let data = result.map_err(|err| {
ImageError::Encoding(EncodingError::new(ImageFormat::Avif.into(), err))
})?;
self.inner.write_all(&data.avif_file)?;
Ok(())
}
}
impl<W: Write> AvifEncoder<W> {
// Does not currently do anything. Mirrors behaviour of old config function.
fn set_color(&mut self, _color: ExtendedColorType) {
// self.config.color_space = ColorSpace::RGB;
}
fn encode_as_img<'buf>(
fallback: &'buf mut Vec<u8>,
data: &'buf [u8],
width: u32,
height: u32,
color: ExtendedColorType,
) -> ImageResult<RgbColor<'buf>> {
// Error wrapping utility for color dependent buffer dimensions.
fn try_from_raw<P: Pixel + 'static>(
data: &[P::Subpixel],
width: u32,
height: u32,
) -> ImageResult<ImageBuffer<P, &[P::Subpixel]>> {
ImageBuffer::from_raw(width, height, data).ok_or_else(|| {
ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
))
})
}
// Convert to target color type using few buffer allocations.
fn convert_into<'buf, P>(
buf: &'buf mut Vec<u8>,
image: ImageBuffer<P, &[P::Subpixel]>,
) -> Img<&'buf [RGBA8]>
where
P: Pixel + 'static,
Rgba<u8>: FromColor<P>,
{
let (width, height) = image.dimensions();
// TODO: conversion re-using the target buffer?
let image: ImageBuffer<Rgba<u8>, _> = image.convert();
*buf = image.into_raw();
Img::new(buf.as_pixels(), width as usize, height as usize)
}
// Cast the input slice using few buffer allocations if possible.
// In particular try not to allocate if the caller did the infallible reverse.
fn cast_buffer<Channel>(buf: &[u8]) -> ImageResult<Cow<[Channel]>>
where
Channel: Pod + Zero,
{
match try_cast_slice(buf) {
Ok(slice) => Ok(Cow::Borrowed(slice)),
Err(PodCastError::OutputSliceWouldHaveSlop) => Err(ImageError::Parameter(
ParameterError::from_kind(ParameterErrorKind::DimensionMismatch),
)),
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned) => {
// Sad, but let's allocate.
// bytemuck checks alignment _before_ slop but size mismatch before this..
if buf.len() % std::mem::size_of::<Channel>() != 0 {
Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)))
} else {
let len = buf.len() / std::mem::size_of::<Channel>();
let mut data = vec![Channel::zero(); len];
let view = try_cast_slice_mut::<_, u8>(data.as_mut_slice()).unwrap();
view.copy_from_slice(buf);
Ok(Cow::Owned(data))
}
}
Err(err) => {
// Are you trying to encode a ZST??
Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::Generic(format!("{:?}", err)),
)))
}
}
}
match color {
ExtendedColorType::Rgb8 => {
// ravif doesn't do any checks but has some asserts, so we do the checks.
let img = try_from_raw::<Rgb<u8>>(data, width, height)?;
// Now, internally ravif uses u32 but it takes usize. We could do some checked
// conversion but instead we use that a non-empty image must be addressable.
if img.pixels().len() == 0 {
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
Ok(RgbColor::Rgb8(Img::new(
AsPixels::as_pixels(data),
width as usize,
height as usize,
)))
}
ExtendedColorType::Rgba8 => {
// ravif doesn't do any checks but has some asserts, so we do the checks.
let img = try_from_raw::<Rgba<u8>>(data, width, height)?;
// Now, internally ravif uses u32 but it takes usize. We could do some checked
// conversion but instead we use that a non-empty image must be addressable.
if img.pixels().len() == 0 {
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
Ok(RgbColor::Rgba8(Img::new(
AsPixels::as_pixels(data),
width as usize,
height as usize,
)))
}
// we need a separate buffer..
ExtendedColorType::L8 => {
let image = try_from_raw::<Luma<u8>>(data, width, height)?;
Ok(RgbColor::Rgba8(convert_into(fallback, image)))
}
ExtendedColorType::La8 => {
let image = try_from_raw::<LumaA<u8>>(data, width, height)?;
Ok(RgbColor::Rgba8(convert_into(fallback, image)))
}
// we need to really convert data..
ExtendedColorType::L16 => {
let buffer = cast_buffer(data)?;
let image = try_from_raw::<Luma<u16>>(&buffer, width, height)?;
Ok(RgbColor::Rgba8(convert_into(fallback, image)))
}
ExtendedColorType::La16 => {
let buffer = cast_buffer(data)?;
let image = try_from_raw::<LumaA<u16>>(&buffer, width, height)?;
Ok(RgbColor::Rgba8(convert_into(fallback, image)))
}
ExtendedColorType::Rgb16 => {
let buffer = cast_buffer(data)?;
let image = try_from_raw::<Rgb<u16>>(&buffer, width, height)?;
Ok(RgbColor::Rgba8(convert_into(fallback, image)))
}
ExtendedColorType::Rgba16 => {
let buffer = cast_buffer(data)?;
let image = try_from_raw::<Rgba<u16>>(&buffer, width, height)?;
Ok(RgbColor::Rgba8(convert_into(fallback, image)))
}
// for cases we do not support at all?
_ => Err(ImageError::Unsupported(
UnsupportedError::from_format_and_kind(
ImageFormat::Avif.into(),
UnsupportedErrorKind::Color(color),
),
)),
}
}
}