1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! Decoding of DXT (S3TC) compression
//!
//! DXT is an image format that supports lossy compression
//!
//! # Related Links
//! * <https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt> - Description of the DXT compression OpenGL extensions.
//!
//! Note: this module only implements bare DXT encoding/decoding, it does not parse formats that can contain DXT files like .dds
use std::io::{self, Read};
use crate::color::ColorType;
use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
use crate::image::ImageDecoder;
/// What version of DXT compression are we using?
/// Note that DXT2 and DXT4 are left away as they're
/// just DXT3 and DXT5 with premultiplied alpha
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(crate) enum DxtVariant {
/// The DXT1 format. 48 bytes of RGB data in a 4x4 pixel square is
/// compressed into an 8 byte block of DXT1 data
DXT1,
/// The DXT3 format. 64 bytes of RGBA data in a 4x4 pixel square is
/// compressed into a 16 byte block of DXT3 data
DXT3,
/// The DXT5 format. 64 bytes of RGBA data in a 4x4 pixel square is
/// compressed into a 16 byte block of DXT5 data
DXT5,
}
impl DxtVariant {
/// Returns the amount of bytes of raw image data
/// that is encoded in a single DXTn block
fn decoded_bytes_per_block(self) -> usize {
match self {
DxtVariant::DXT1 => 48,
DxtVariant::DXT3 | DxtVariant::DXT5 => 64,
}
}
/// Returns the amount of bytes per block of encoded DXTn data
fn encoded_bytes_per_block(self) -> usize {
match self {
DxtVariant::DXT1 => 8,
DxtVariant::DXT3 | DxtVariant::DXT5 => 16,
}
}
/// Returns the color type that is stored in this DXT variant
pub(crate) fn color_type(self) -> ColorType {
match self {
DxtVariant::DXT1 => ColorType::Rgb8,
DxtVariant::DXT3 | DxtVariant::DXT5 => ColorType::Rgba8,
}
}
}
/// DXT decoder
pub(crate) struct DxtDecoder<R: Read> {
inner: R,
width_blocks: u32,
height_blocks: u32,
variant: DxtVariant,
row: u32,
}
impl<R: Read> DxtDecoder<R> {
/// Create a new DXT decoder that decodes from the stream ```r```.
/// As DXT is often stored as raw buffers with the width/height
/// somewhere else the width and height of the image need
/// to be passed in ```width``` and ```height```, as well as the
/// DXT variant in ```variant```.
/// width and height are required to be powers of 2 and at least 4.
/// otherwise an error will be returned
pub(crate) fn new(
r: R,
width: u32,
height: u32,
variant: DxtVariant,
) -> Result<DxtDecoder<R>, ImageError> {
if width % 4 != 0 || height % 4 != 0 {
// TODO: this is actually a bit of a weird case. We could return `DecodingError` but
// it's not really the format that is wrong However, the encoder should surely return
// `EncodingError` so it would be the logical choice for symmetry.
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
let width_blocks = width / 4;
let height_blocks = height / 4;
Ok(DxtDecoder {
inner: r,
width_blocks,
height_blocks,
variant,
row: 0,
})
}
fn scanline_bytes(&self) -> u64 {
self.variant.decoded_bytes_per_block() as u64 * u64::from(self.width_blocks)
}
fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result<usize> {
assert_eq!(
u64::try_from(buf.len()),
Ok(
#[allow(deprecated)]
self.scanline_bytes()
)
);
let mut src =
vec![0u8; self.variant.encoded_bytes_per_block() * self.width_blocks as usize];
self.inner.read_exact(&mut src)?;
match self.variant {
DxtVariant::DXT1 => decode_dxt1_row(&src, buf),
DxtVariant::DXT3 => decode_dxt3_row(&src, buf),
DxtVariant::DXT5 => decode_dxt5_row(&src, buf),
}
self.row += 1;
Ok(buf.len())
}
}
// Note that, due to the way that DXT compression works, a scanline is considered to consist out of
// 4 lines of pixels.
impl<R: Read> ImageDecoder for DxtDecoder<R> {
fn dimensions(&self) -> (u32, u32) {
(self.width_blocks * 4, self.height_blocks * 4)
}
fn color_type(&self) -> ColorType {
self.variant.color_type()
}
fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
#[allow(deprecated)]
for chunk in buf.chunks_mut(self.scanline_bytes().max(1) as usize) {
self.read_scanline(chunk)?;
}
Ok(())
}
fn read_image_boxed(self: Box<Self>, buf: &mut [u8]) -> ImageResult<()> {
(*self).read_image(buf)
}
}
/**
* Actual encoding/decoding logic below.
*/
type Rgb = [u8; 3];
/// decodes a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value into 8-bit RGB
/// mapping is done so min/max range values are preserved. So for 5-bit
/// values 0x00 -> 0x00 and 0x1F -> 0xFF
fn enc565_decode(value: u16) -> Rgb {
let red = (value >> 11) & 0x1F;
let green = (value >> 5) & 0x3F;
let blue = (value) & 0x1F;
[
(red * 0xFF / 0x1F) as u8,
(green * 0xFF / 0x3F) as u8,
(blue * 0xFF / 0x1F) as u8,
]
}
/*
* Functions for decoding DXT compression
*/
/// Constructs the DXT5 alpha lookup table from the two alpha entries
/// if alpha0 > alpha1, constructs a table of [a0, a1, 6 linearly interpolated values from a0 to a1]
/// if alpha0 <= alpha1, constructs a table of [a0, a1, 4 linearly interpolated values from a0 to a1, 0, 0xFF]
fn alpha_table_dxt5(alpha0: u8, alpha1: u8) -> [u8; 8] {
let mut table = [alpha0, alpha1, 0, 0, 0, 0, 0, 0xFF];
if alpha0 > alpha1 {
for i in 2..8u16 {
table[i as usize] =
(((8 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 7) as u8;
}
} else {
for i in 2..6u16 {
table[i as usize] =
(((6 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 5) as u8;
}
}
table
}
/// decodes an 8-byte dxt color block into the RGB channels of a 16xRGB or 16xRGBA block.
/// source should have a length of 8, dest a length of 48 (RGB) or 64 (RGBA)
fn decode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
// sanity checks, also enable the compiler to elide all following bound checks
assert!(source.len() == 8 && (dest.len() == 48 || dest.len() == 64));
// calculate pitch to store RGB values in dest (3 for RGB, 4 for RGBA)
let pitch = dest.len() / 16;
// extract color data
let color0 = u16::from(source[0]) | (u16::from(source[1]) << 8);
let color1 = u16::from(source[2]) | (u16::from(source[3]) << 8);
let color_table = u32::from(source[4])
| (u32::from(source[5]) << 8)
| (u32::from(source[6]) << 16)
| (u32::from(source[7]) << 24);
// let color_table = source[4..8].iter().rev().fold(0, |t, &b| (t << 8) | b as u32);
// decode the colors to rgb format
let mut colors = [[0; 3]; 4];
colors[0] = enc565_decode(color0);
colors[1] = enc565_decode(color1);
// determine color interpolation method
if color0 > color1 || !is_dxt1 {
// linearly interpolate the other two color table entries
for i in 0..3 {
colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
}
} else {
// linearly interpolate one other entry, keep the other at 0
for i in 0..3 {
colors[2][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
}
}
// serialize the result. Every color is determined by looking up
// two bits in color_table which identify which color to actually pick from the 4 possible colors
for i in 0..16 {
dest[i * pitch..i * pitch + 3]
.copy_from_slice(&colors[(color_table >> (i * 2)) as usize & 3]);
}
}
/// Decodes a 16-byte bock of dxt5 data to a 16xRGBA block
fn decode_dxt5_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 16 && dest.len() == 64);
// extract alpha index table (stored as little endian 64-bit value)
let alpha_table = source[2..8]
.iter()
.rev()
.fold(0, |t, &b| (t << 8) | u64::from(b));
// alhpa level decode
let alphas = alpha_table_dxt5(source[0], source[1]);
// serialize alpha
for i in 0..16 {
dest[i * 4 + 3] = alphas[(alpha_table >> (i * 3)) as usize & 7];
}
// handle colors
decode_dxt_colors(&source[8..16], dest, false);
}
/// Decodes a 16-byte bock of dxt3 data to a 16xRGBA block
fn decode_dxt3_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 16 && dest.len() == 64);
// extract alpha index table (stored as little endian 64-bit value)
let alpha_table = source[0..8]
.iter()
.rev()
.fold(0, |t, &b| (t << 8) | u64::from(b));
// serialize alpha (stored as 4-bit values)
for i in 0..16 {
dest[i * 4 + 3] = ((alpha_table >> (i * 4)) as u8 & 0xF) * 0x11;
}
// handle colors
decode_dxt_colors(&source[8..16], dest, false);
}
/// Decodes a 8-byte bock of dxt5 data to a 16xRGB block
fn decode_dxt1_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 8 && dest.len() == 48);
decode_dxt_colors(source, dest, true);
}
/// Decode a row of DXT1 data to four rows of RGB data.
/// source.len() should be a multiple of 8, otherwise this panics.
fn decode_dxt1_row(source: &[u8], dest: &mut [u8]) {
assert!(source.len() % 8 == 0);
let block_count = source.len() / 8;
assert!(dest.len() >= block_count * 48);
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 48];
for (x, encoded_block) in source.chunks(8).enumerate() {
decode_dxt1_block(encoded_block, &mut decoded_block);
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 12;
dest[offset..offset + 12].copy_from_slice(&decoded_block[line * 12..(line + 1) * 12]);
}
}
}
/// Decode a row of DXT3 data to four rows of RGBA data.
/// source.len() should be a multiple of 16, otherwise this panics.
fn decode_dxt3_row(source: &[u8], dest: &mut [u8]) {
assert!(source.len() % 16 == 0);
let block_count = source.len() / 16;
assert!(dest.len() >= block_count * 64);
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 64];
for (x, encoded_block) in source.chunks(16).enumerate() {
decode_dxt3_block(encoded_block, &mut decoded_block);
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 16;
dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
}
}
}
/// Decode a row of DXT5 data to four rows of RGBA data.
/// source.len() should be a multiple of 16, otherwise this panics.
fn decode_dxt5_row(source: &[u8], dest: &mut [u8]) {
assert!(source.len() % 16 == 0);
let block_count = source.len() / 16;
assert!(dest.len() >= block_count * 64);
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 64];
for (x, encoded_block) in source.chunks(16).enumerate() {
decode_dxt5_block(encoded_block, &mut decoded_block);
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 16;
dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
}
}
}