1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
// Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
// Copyright (c) 2017-2022, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
#![allow(non_camel_case_types)]
cfg_if::cfg_if! {
if #[cfg(nasm_x86_64)] {
pub use crate::asm::x86::ec::*;
} else {
pub use self::rust::*;
}
}
use crate::context::{CDFContext, CDFContextLog, CDFOffset};
use bitstream_io::{BigEndian, BitWrite, BitWriter};
use std::io;
pub const OD_BITRES: u8 = 3;
const EC_PROB_SHIFT: u32 = 6;
const EC_MIN_PROB: u32 = 4;
type ec_window = u32;
/// Public trait interface to a bitstream `Writer`: a `Counter` can be
/// used to count bits for cost analysis without actually storing
/// anything (using a new `WriterCounter` as a `Writer`), to record
/// tokens for later writing (using a new `WriterRecorder` as a
/// `Writer`) to write actual final bits out using a range encoder
/// (using a new `WriterEncoder` as a `Writer`). A `WriterRecorder`'s
/// contents can be replayed into a `WriterEncoder`.
pub trait Writer {
/// Write a symbol `s`, using the passed in cdf reference; leaves `cdf` unchanged
fn symbol<const CDF_LEN: usize>(&mut self, s: u32, cdf: &[u16; CDF_LEN]);
/// return approximate number of fractional bits in `OD_BITRES`
/// precision to write a symbol `s` using the passed in cdf reference;
/// leaves `cdf` unchanged
fn symbol_bits(&self, s: u32, cdf: &[u16]) -> u32;
/// Write a symbol `s`, using the passed in cdf reference; updates the referenced cdf.
fn symbol_with_update<const CDF_LEN: usize>(
&mut self, s: u32, cdf: CDFOffset<CDF_LEN>, log: &mut CDFContextLog,
fc: &mut CDFContext,
);
/// Write a bool using passed in probability
fn bool(&mut self, val: bool, f: u16);
/// Write a single bit with flat probability
fn bit(&mut self, bit: u16);
/// Write literal `bits` with flat probability
fn literal(&mut self, bits: u8, s: u32);
/// Write passed `level` as a golomb code
fn write_golomb(&mut self, level: u32);
/// Write a value `v` in `[0, n-1]` quasi-uniformly
fn write_quniform(&mut self, n: u32, v: u32);
/// Return fractional bits needed to write a value `v` in `[0, n-1]`
/// quasi-uniformly
fn count_quniform(&self, n: u32, v: u32) -> u32;
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite subexponential
fn write_subexp(&mut self, n: u32, k: u8, v: u32);
/// Return fractional bits needed to write symbol v in `[0, n-1]` with
/// parameter k as finite subexponential
fn count_subexp(&self, n: u32, k: u8, v: u32) -> u32;
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite
/// subexponential based on a reference `r` also in `[0, n-1]`.
fn write_unsigned_subexp_with_ref(&mut self, v: u32, mx: u32, k: u8, r: u32);
/// Return fractional bits needed to write symbol `v` in `[0, n-1]` with
/// parameter `k` as finite subexponential based on a reference `r`
/// also in `[0, n-1]`.
fn count_unsigned_subexp_with_ref(
&self, v: u32, mx: u32, k: u8, r: u32,
) -> u32;
/// Write symbol v in `[-(n-1), n-1]` with parameter k as finite
/// subexponential based on a reference ref also in `[-(n-1), n-1]`.
fn write_signed_subexp_with_ref(
&mut self, v: i32, low: i32, high: i32, k: u8, r: i32,
);
/// Return fractional bits needed to write symbol `v` in `[-(n-1), n-1]`
/// with parameter `k` as finite subexponential based on a reference
/// `r` also in `[-(n-1), n-1]`.
fn count_signed_subexp_with_ref(
&self, v: i32, low: i32, high: i32, k: u8, r: i32,
) -> u32;
/// Return current length of range-coded bitstream in integer bits
fn tell(&mut self) -> u32;
/// Return current length of range-coded bitstream in fractional
/// bits with `OD_BITRES` decimal precision
fn tell_frac(&mut self) -> u32;
/// Save current point in coding/recording to a checkpoint
fn checkpoint(&mut self) -> WriterCheckpoint;
/// Restore saved position in coding/recording from a checkpoint
fn rollback(&mut self, _: &WriterCheckpoint);
/// Add additional bits from rate estimators without coding a real symbol
fn add_bits_frac(&mut self, bits_frac: u32);
}
/// `StorageBackend` is an internal trait used to tie a specific `Writer`
/// implementation's storage to the generic `Writer`. It would be
/// private, but Rust is deprecating 'private trait in a public
/// interface' support.
pub trait StorageBackend {
/// Store partially-computed range code into given storage backend
fn store(&mut self, fl: u16, fh: u16, nms: u16);
/// Return bit-length of encoded stream to date
fn stream_bits(&mut self) -> usize;
/// Backend implementation of checkpoint to pass through Writer interface
fn checkpoint(&mut self) -> WriterCheckpoint;
/// Backend implementation of rollback to pass through Writer interface
fn rollback(&mut self, _: &WriterCheckpoint);
}
#[derive(Debug, Clone)]
pub struct WriterBase<S> {
/// The number of values in the current range.
rng: u16,
/// The number of bits of data in the current value.
cnt: i16,
#[cfg(feature = "desync_finder")]
/// Debug enable flag
debug: bool,
/// Extra offset added to tell() and tell_frac() to approximate costs
/// of actually coding a symbol
fake_bits_frac: u32,
/// Use-specific storage
s: S,
}
#[derive(Debug, Clone)]
pub struct WriterCounter {
/// Bits that would be shifted out to date
bits: usize,
}
#[derive(Debug, Clone)]
pub struct WriterRecorder {
/// Storage for tokens
storage: Vec<(u16, u16, u16)>,
/// Bits that would be shifted out to date
bits: usize,
}
#[derive(Debug, Clone)]
pub struct WriterEncoder {
/// A buffer for output bytes with their associated carry flags.
precarry: Vec<u16>,
/// The low end of the current range.
low: ec_window,
}
#[derive(Clone)]
pub struct WriterCheckpoint {
/// Stream length coded/recorded to date, in the unit used by the Writer,
/// which may be bytes or bits. This depends on the assumption
/// that a Writer will only ever restore its own Checkpoint.
stream_size: usize,
/// To be defined by backend
backend_var: usize,
/// Saved number of values in the current range.
rng: u16,
/// Saved number of bits of data in the current value.
cnt: i16,
}
/// Constructor for a counting Writer
impl WriterCounter {
#[inline]
pub const fn new() -> WriterBase<WriterCounter> {
WriterBase::new(WriterCounter { bits: 0 })
}
}
/// Constructor for a recording Writer
impl WriterRecorder {
#[inline]
pub const fn new() -> WriterBase<WriterRecorder> {
WriterBase::new(WriterRecorder { storage: Vec::new(), bits: 0 })
}
}
/// Constructor for a encoding Writer
impl WriterEncoder {
#[inline]
pub const fn new() -> WriterBase<WriterEncoder> {
WriterBase::new(WriterEncoder { precarry: Vec::new(), low: 0 })
}
}
/// The Counter stores nothing we write to it, it merely counts the
/// bit usage like in an Encoder for cost analysis.
impl StorageBackend for WriterBase<WriterCounter> {
#[inline]
fn store(&mut self, fl: u16, fh: u16, nms: u16) {
let (_l, r) = self.lr_compute(fl, fh, nms);
let d = r.leading_zeros() as usize;
self.s.bits += d;
self.rng = r << d;
}
#[inline]
fn stream_bits(&mut self) -> usize {
self.s.bits
}
#[inline]
fn checkpoint(&mut self) -> WriterCheckpoint {
WriterCheckpoint {
stream_size: self.s.bits,
backend_var: 0,
rng: self.rng,
// We do not use `cnt` within Counter, but setting it here allows the compiler
// to do a 32-bit merged load/store.
cnt: self.cnt,
}
}
#[inline]
fn rollback(&mut self, checkpoint: &WriterCheckpoint) {
self.rng = checkpoint.rng;
self.s.bits = checkpoint.stream_size;
}
}
/// The Recorder does not produce a range-coded bitstream, but it
/// still tracks the range coding progress like in an Encoder, as it
/// neds to be able to report bit costs for RDO decisions. It stores a
/// pair of mostly-computed range coding values per token recorded.
impl StorageBackend for WriterBase<WriterRecorder> {
#[inline]
fn store(&mut self, fl: u16, fh: u16, nms: u16) {
let (_l, r) = self.lr_compute(fl, fh, nms);
let d = r.leading_zeros() as usize;
self.s.bits += d;
self.rng = r << d;
self.s.storage.push((fl, fh, nms));
}
#[inline]
fn stream_bits(&mut self) -> usize {
self.s.bits
}
#[inline]
fn checkpoint(&mut self) -> WriterCheckpoint {
WriterCheckpoint {
stream_size: self.s.bits,
backend_var: self.s.storage.len(),
rng: self.rng,
cnt: self.cnt,
}
}
#[inline]
fn rollback(&mut self, checkpoint: &WriterCheckpoint) {
self.rng = checkpoint.rng;
self.cnt = checkpoint.cnt;
self.s.bits = checkpoint.stream_size;
self.s.storage.truncate(checkpoint.backend_var);
}
}
/// An Encoder produces an actual range-coded bitstream from passed in
/// tokens. It does not retain any information about the coded
/// tokens, only the resulting bitstream, and so it cannot be replayed
/// (only checkpointed and rolled back).
impl StorageBackend for WriterBase<WriterEncoder> {
fn store(&mut self, fl: u16, fh: u16, nms: u16) {
let (l, r) = self.lr_compute(fl, fh, nms);
let mut low = l + self.s.low;
let mut c = self.cnt;
let d = r.leading_zeros() as usize;
let mut s = c + (d as i16);
if s >= 0 {
c += 16;
let mut m = (1 << c) - 1;
if s >= 8 {
self.s.precarry.push((low >> c) as u16);
low &= m;
c -= 8;
m >>= 8;
}
self.s.precarry.push((low >> c) as u16);
s = c + (d as i16) - 24;
low &= m;
}
self.s.low = low << d;
self.rng = r << d;
self.cnt = s;
}
#[inline]
fn stream_bits(&mut self) -> usize {
self.s.precarry.len() * 8
}
#[inline]
fn checkpoint(&mut self) -> WriterCheckpoint {
WriterCheckpoint {
stream_size: self.s.precarry.len(),
backend_var: self.s.low as usize,
rng: self.rng,
cnt: self.cnt,
}
}
fn rollback(&mut self, checkpoint: &WriterCheckpoint) {
self.rng = checkpoint.rng;
self.cnt = checkpoint.cnt;
self.s.low = checkpoint.backend_var as ec_window;
self.s.precarry.truncate(checkpoint.stream_size);
}
}
/// A few local helper functions needed by the Writer that are not
/// part of the public interface.
impl<S> WriterBase<S> {
/// Internal constructor called by the subtypes that implement the
/// actual encoder and Recorder.
#[inline]
#[cfg(not(feature = "desync_finder"))]
const fn new(storage: S) -> Self {
WriterBase { rng: 0x8000, cnt: -9, fake_bits_frac: 0, s: storage }
}
#[inline]
#[cfg(feature = "desync_finder")]
fn new(storage: S) -> Self {
WriterBase {
rng: 0x8000,
cnt: -9,
debug: std::env::var_os("RAV1E_DEBUG").is_some(),
fake_bits_frac: 0,
s: storage,
}
}
/// Compute low and range values from token cdf values and local state
const fn lr_compute(&self, fl: u16, fh: u16, nms: u16) -> (ec_window, u16) {
let r = self.rng as u32;
debug_assert!(32768 <= r);
let mut u = (((r >> 8) * (fl as u32 >> EC_PROB_SHIFT))
>> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB * nms as u32;
if fl >= 32768 {
u = r;
}
let v = (((r >> 8) * (fh as u32 >> EC_PROB_SHIFT)) >> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB * (nms - 1) as u32;
(r - u, (u - v) as u16)
}
/// Given the current total integer number of bits used and the current value of
/// rng, computes the fraction number of bits used to `OD_BITRES` precision.
/// This is used by `od_ec_enc_tell_frac()` and `od_ec_dec_tell_frac()`.
/// `nbits_total`: The number of whole bits currently used, i.e., the value
/// returned by `od_ec_enc_tell()` or `od_ec_dec_tell()`.
/// `rng`: The current value of rng from either the encoder or decoder state.
/// Return: The number of bits scaled by `2**OD_BITRES`.
/// This will always be slightly larger than the exact value (e.g., all
/// rounding error is in the positive direction).
fn frac_compute(nbits_total: u32, mut rng: u32) -> u32 {
// To handle the non-integral number of bits still left in the encoder/decoder
// state, we compute the worst-case number of bits of val that must be
// encoded to ensure that the value is inside the range for any possible
// subsequent bits.
// The computation here is independent of val itself (the decoder does not
// even track that value), even though the real number of bits used after
// od_ec_enc_done() may be 1 smaller if rng is a power of two and the
// corresponding trailing bits of val are all zeros.
// If we did try to track that special case, then coding a value with a
// probability of 1/(1 << n) might sometimes appear to use more than n bits.
// This may help explain the surprising result that a newly initialized
// encoder or decoder claims to have used 1 bit.
let nbits = nbits_total << OD_BITRES;
let mut l = 0;
for _ in 0..OD_BITRES {
rng = (rng * rng) >> 15;
let b = rng >> 16;
l = (l << 1) | b;
rng >>= b;
}
nbits - l
}
const fn recenter(r: u32, v: u32) -> u32 {
if v > (r << 1) {
v
} else if v >= r {
(v - r) << 1
} else {
((r - v) << 1) - 1
}
}
#[cfg(feature = "desync_finder")]
fn print_backtrace(&self, s: u32) {
let mut depth = 3;
backtrace::trace(|frame| {
let ip = frame.ip();
depth -= 1;
if depth == 0 {
backtrace::resolve(ip, |symbol| {
if let Some(name) = symbol.name() {
println!("Writing symbol {} from {}", s, name);
}
});
false
} else {
true
}
});
}
}
/// Replay implementation specific to the Recorder
impl WriterBase<WriterRecorder> {
/// Replays the partially-computed range tokens out of the Recorder's
/// storage and into the passed in Writer, which may be an Encoder
/// or another Recorder. Clears the Recorder after replay.
pub fn replay(&mut self, dest: &mut dyn StorageBackend) {
for &(fl, fh, nms) in &self.s.storage {
dest.store(fl, fh, nms);
}
self.rng = 0x8000;
self.cnt = -9;
self.s.storage.truncate(0);
self.s.bits = 0;
}
}
/// Done implementation specific to the Encoder
impl WriterBase<WriterEncoder> {
/// Indicates that there are no more symbols to encode. Flushes
/// remaining state into coding and returns a vector containing the
/// final bitstream.
pub fn done(&mut self) -> Vec<u8> {
// We output the minimum number of bits that ensures that the symbols encoded
// thus far will be decoded correctly regardless of the bits that follow.
let l = self.s.low;
let mut c = self.cnt;
let mut s = 10;
let m = 0x3FFF;
let mut e = ((l + m) & !m) | (m + 1);
s += c;
if s > 0 {
let mut n = (1 << (c + 16)) - 1;
loop {
self.s.precarry.push((e >> (c + 16)) as u16);
e &= n;
s -= 8;
c -= 8;
n >>= 8;
if s <= 0 {
break;
}
}
}
let mut c = 0;
let mut offs = self.s.precarry.len();
// dynamic allocation: grows during encode
let mut out = vec![0_u8; offs];
while offs > 0 {
offs -= 1;
c += self.s.precarry[offs];
out[offs] = c as u8;
c >>= 8;
}
out
}
}
/// Generic/shared implementation for `Writer`s with `StorageBackend`s
/// (ie, `Encoder`s and `Recorder`s)
impl<S> Writer for WriterBase<S>
where
WriterBase<S>: StorageBackend,
{
/// Encode a single binary value.
/// `val`: The value to encode (0 or 1).
/// `f`: The probability that the val is one, scaled by 32768.
fn bool(&mut self, val: bool, f: u16) {
debug_assert!(0 < f);
debug_assert!(f < 32768);
self.symbol(u32::from(val), &[f, 0]);
}
/// Encode a single boolean value.
///
/// - `val`: The value to encode (`false` or `true`).
/// - `f`: The probability that the `val` is `true`, scaled by `32768`.
fn bit(&mut self, bit: u16) {
self.bool(bit == 1, 16384);
}
// fake add bits
fn add_bits_frac(&mut self, bits_frac: u32) {
self.fake_bits_frac += bits_frac
}
/// Encode a literal bitstring, bit by bit in MSB order, with flat
/// probability.
///
/// - 'bits': Length of bitstring
/// - 's': Bit string to encode
fn literal(&mut self, bits: u8, s: u32) {
for bit in (0..bits).rev() {
self.bit((1 & (s >> bit)) as u16);
}
}
/// Encodes a symbol given a cumulative distribution function (CDF) table in Q15.
///
/// - `s`: The index of the symbol to encode.
/// - `cdf`: The CDF, such that symbol s falls in the range
/// `[s > 0 ? cdf[s - 1] : 0, cdf[s])`.
/// The values must be monotonically non-decreasing, and the last value
/// must be greater than 32704. There should be at most 16 values.
/// The lower 6 bits of the last value hold the count.
#[inline(always)]
fn symbol<const CDF_LEN: usize>(&mut self, s: u32, cdf: &[u16; CDF_LEN]) {
debug_assert!(cdf[cdf.len() - 1] < (1 << EC_PROB_SHIFT));
let s = s as usize;
debug_assert!(s < cdf.len());
// The above is stricter than the following overflow check: s <= cdf.len()
let nms = cdf.len() - s;
let fl = if s > 0 {
// SAFETY: We asserted that s is less than the length of the cdf
unsafe { *cdf.get_unchecked(s - 1) }
} else {
32768
};
// SAFETY: We asserted that s is less than the length of the cdf
let fh = unsafe { *cdf.get_unchecked(s) };
debug_assert!((fh >> EC_PROB_SHIFT) <= (fl >> EC_PROB_SHIFT));
debug_assert!(fl <= 32768);
self.store(fl, fh, nms as u16);
}
/// Encodes a symbol given a cumulative distribution function (CDF)
/// table in Q15, then updates the CDF probabilities to reflect we've
/// written one more symbol 's'.
///
/// - `s`: The index of the symbol to encode.
/// - `cdf`: The CDF, such that symbol s falls in the range
/// `[s > 0 ? cdf[s - 1] : 0, cdf[s])`.
/// The values must be monotonically non-decreasing, and the last value
/// must be greater 32704. There should be at most 16 values.
/// The lower 6 bits of the last value hold the count.
fn symbol_with_update<const CDF_LEN: usize>(
&mut self, s: u32, cdf: CDFOffset<CDF_LEN>, log: &mut CDFContextLog,
fc: &mut CDFContext,
) {
#[cfg(feature = "desync_finder")]
{
if self.debug {
self.print_backtrace(s);
}
}
let cdf = log.push(fc, cdf);
self.symbol(s, cdf);
update_cdf(cdf, s);
}
/// Returns approximate cost for a symbol given a cumulative
/// distribution function (CDF) table and current write state.
///
/// - `s`: The index of the symbol to encode.
/// - `cdf`: The CDF, such that symbol s falls in the range
/// `[s > 0 ? cdf[s - 1] : 0, cdf[s])`.
/// The values must be monotonically non-decreasing, and the last value
/// must be greater than 32704. There should be at most 16 values.
/// The lower 6 bits of the last value hold the count.
fn symbol_bits(&self, s: u32, cdf: &[u16]) -> u32 {
let mut bits = 0;
debug_assert!(cdf[cdf.len() - 1] < (1 << EC_PROB_SHIFT));
debug_assert!(32768 <= self.rng);
let rng = (self.rng >> 8) as u32;
let fh = cdf[s as usize] as u32 >> EC_PROB_SHIFT;
let r: u32 = if s > 0 {
let fl = cdf[s as usize - 1] as u32 >> EC_PROB_SHIFT;
((rng * fl) >> (7 - EC_PROB_SHIFT)) - ((rng * fh) >> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB
} else {
let nms1 = cdf.len() as u32 - s - 1;
self.rng as u32
- ((rng * fh) >> (7 - EC_PROB_SHIFT))
- nms1 * EC_MIN_PROB
};
// The 9 here counteracts the offset of -9 baked into cnt. Don't include a termination bit.
let pre = Self::frac_compute((self.cnt + 9) as u32, self.rng as u32);
let d = r.leading_zeros() - 16;
let mut c = self.cnt;
let mut sh = c + (d as i16);
if sh >= 0 {
c += 16;
if sh >= 8 {
bits += 8;
c -= 8;
}
bits += 8;
sh = c + (d as i16) - 24;
}
// The 9 here counteracts the offset of -9 baked into cnt. Don't include a termination bit.
Self::frac_compute((bits + sh + 9) as u32, r << d) - pre
}
/// Encode a golomb to the bitstream.
///
/// - 'level': passed in value to encode
fn write_golomb(&mut self, level: u32) {
let x = level + 1;
let length = 32 - x.leading_zeros();
for _ in 0..length - 1 {
self.bit(0);
}
for i in (0..length).rev() {
self.bit(((x >> i) & 0x01) as u16);
}
}
/// Write a value `v` in `[0, n-1]` quasi-uniformly
/// - `n`: size of interval
/// - `v`: value to encode
fn write_quniform(&mut self, n: u32, v: u32) {
if n > 1 {
let l = 32 - n.leading_zeros() as u8;
let m = (1 << l) - n;
if v < m {
self.literal(l - 1, v);
} else {
self.literal(l - 1, m + ((v - m) >> 1));
self.literal(1, (v - m) & 1);
}
}
}
/// Returns `QOD_BITRES` bits for a value `v` in `[0, n-1]` quasi-uniformly
/// - `n`: size of interval
/// - `v`: value to encode
fn count_quniform(&self, n: u32, v: u32) -> u32 {
let mut bits = 0;
if n > 1 {
let l = 32 - n.leading_zeros();
let m = (1 << l) - n;
bits += (l - 1) << OD_BITRES;
if v >= m {
bits += 1 << OD_BITRES;
}
}
bits
}
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite subexponential
///
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `v`: value to encode
fn write_subexp(&mut self, n: u32, k: u8, v: u32) {
let mut i = 0;
let mut mk = 0;
loop {
let b = if i != 0 { k + i - 1 } else { k };
let a = 1 << b;
if n <= mk + 3 * a {
self.write_quniform(n - mk, v - mk);
break;
} else {
let t = v >= mk + a;
self.bool(t, 16384);
if t {
i += 1;
mk += a;
} else {
self.literal(b, v - mk);
break;
}
}
}
}
/// Returns `QOD_BITRES` bits for symbol `v` in `[0, n-1]` with parameter `k`
/// as finite subexponential
///
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `v`: value to encode
fn count_subexp(&self, n: u32, k: u8, v: u32) -> u32 {
let mut i = 0;
let mut mk = 0;
let mut bits = 0;
loop {
let b = if i != 0 { k + i - 1 } else { k };
let a = 1 << b;
if n <= mk + 3 * a {
bits += self.count_quniform(n - mk, v - mk);
break;
} else {
let t = v >= mk + a;
bits += 1 << OD_BITRES;
if t {
i += 1;
mk += a;
} else {
bits += (b as u32) << OD_BITRES;
break;
}
}
}
bits
}
/// Write symbol `v` in `[0, n-1]` with parameter `k` as finite
/// subexponential based on a reference `r` also in `[0, n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn write_unsigned_subexp_with_ref(&mut self, v: u32, n: u32, k: u8, r: u32) {
if (r << 1) <= n {
self.write_subexp(n, k, Self::recenter(r, v));
} else {
self.write_subexp(n, k, Self::recenter(n - 1 - r, n - 1 - v));
}
}
/// Returns `QOD_BITRES` bits for symbol `v` in `[0, n-1]`
/// with parameter `k` as finite subexponential based on a
/// reference `r` also in `[0, n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn count_unsigned_subexp_with_ref(
&self, v: u32, n: u32, k: u8, r: u32,
) -> u32 {
if (r << 1) <= n {
self.count_subexp(n, k, Self::recenter(r, v))
} else {
self.count_subexp(n, k, Self::recenter(n - 1 - r, n - 1 - v))
}
}
/// Write symbol `v` in `[-(n-1), n-1]` with parameter `k` as finite
/// subexponential based on a reference `r` also in `[-(n-1), n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn write_signed_subexp_with_ref(
&mut self, v: i32, low: i32, high: i32, k: u8, r: i32,
) {
self.write_unsigned_subexp_with_ref(
(v - low) as u32,
(high - low) as u32,
k,
(r - low) as u32,
);
}
/// Returns `QOD_BITRES` bits for symbol `v` in `[-(n-1), n-1]`
/// with parameter `k` as finite subexponential based on a
/// reference `r` also in `[-(n-1), n-1]`.
///
/// - `v`: value to encode
/// - `n`: size of interval
/// - `k`: "parameter"
/// - `r`: reference
fn count_signed_subexp_with_ref(
&self, v: i32, low: i32, high: i32, k: u8, r: i32,
) -> u32 {
self.count_unsigned_subexp_with_ref(
(v - low) as u32,
(high - low) as u32,
k,
(r - low) as u32,
)
}
/// Returns the number of bits "used" by the encoded symbols so far.
/// This same number can be computed in either the encoder or the
/// decoder, and is suitable for making coding decisions. The value
/// will be the same whether using an `Encoder` or `Recorder`.
///
/// Return: The integer number of bits.
/// This will always be slightly larger than the exact value (e.g., all
/// rounding error is in the positive direction).
fn tell(&mut self) -> u32 {
// The 10 here counteracts the offset of -9 baked into cnt, and adds 1 extra
// bit, which we reserve for terminating the stream.
(((self.stream_bits()) as i32) + (self.cnt as i32) + 10) as u32
+ (self.fake_bits_frac >> 8)
}
/// Returns the number of bits "used" by the encoded symbols so far.
/// This same number can be computed in either the encoder or the
/// decoder, and is suitable for making coding decisions. The value
/// will be the same whether using an `Encoder` or `Recorder`.
///
/// Return: The number of bits scaled by `2**OD_BITRES`.
/// This will always be slightly larger than the exact value (e.g., all
/// rounding error is in the positive direction).
fn tell_frac(&mut self) -> u32 {
Self::frac_compute(self.tell(), self.rng as u32) + self.fake_bits_frac
}
/// Save current point in coding/recording to a checkpoint that can
/// be restored later. A `WriterCheckpoint` can be generated for an
/// `Encoder` or `Recorder`, but can only be used to rollback the `Writer`
/// instance from which it was generated.
fn checkpoint(&mut self) -> WriterCheckpoint {
StorageBackend::checkpoint(self)
}
/// Roll back a given `Writer` to the state saved in the `WriterCheckpoint`
///
/// - 'wc': Saved `Writer` state/posiiton to restore
fn rollback(&mut self, wc: &WriterCheckpoint) {
StorageBackend::rollback(self, wc)
}
}
pub trait BCodeWriter {
fn recenter_nonneg(&mut self, r: u16, v: u16) -> u16;
fn recenter_finite_nonneg(&mut self, n: u16, r: u16, v: u16) -> u16;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_quniform(&mut self, n: u16, v: u16) -> Result<(), std::io::Error>;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_subexpfin(
&mut self, n: u16, k: u16, v: u16,
) -> Result<(), std::io::Error>;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error>;
/// # Errors
///
/// - Returns `std::io::Error` if the writer cannot be written to.
fn write_s_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error>;
}
impl<W: io::Write> BCodeWriter for BitWriter<W, BigEndian> {
fn recenter_nonneg(&mut self, r: u16, v: u16) -> u16 {
/* Recenters a non-negative literal v around a reference r */
if v > (r << 1) {
v
} else if v >= r {
(v - r) << 1
} else {
((r - v) << 1) - 1
}
}
fn recenter_finite_nonneg(&mut self, n: u16, r: u16, v: u16) -> u16 {
/* Recenters a non-negative literal v in [0, n-1] around a
reference r also in [0, n-1] */
if (r << 1) <= n {
self.recenter_nonneg(r, v)
} else {
self.recenter_nonneg(n - 1 - r, n - 1 - v)
}
}
fn write_quniform(&mut self, n: u16, v: u16) -> Result<(), std::io::Error> {
if n > 1 {
let l = 16 - n.leading_zeros() as u8;
let m = (1 << l) - n;
if v < m {
self.write(l as u32 - 1, v)
} else {
self.write(l as u32 - 1, m + ((v - m) >> 1))?;
self.write(1, (v - m) & 1)
}
} else {
Ok(())
}
}
fn write_subexpfin(
&mut self, n: u16, k: u16, v: u16,
) -> Result<(), std::io::Error> {
/* Finite subexponential code that codes a symbol v in [0, n-1] with parameter k */
let mut i = 0;
let mut mk = 0;
loop {
let b = if i > 0 { k + i - 1 } else { k };
let a = 1 << b;
if n <= mk + 3 * a {
return self.write_quniform(n - mk, v - mk);
} else {
let t = v >= mk + a;
self.write_bit(t)?;
if t {
i += 1;
mk += a;
} else {
return self.write(b as u32, v - mk);
}
}
}
}
fn write_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error> {
/* Finite subexponential code that codes a symbol v in [0, n-1] with
parameter k based on a reference ref also in [0, n-1].
Recenters symbol around r first and then uses a finite subexponential code. */
let recentered_v = self.recenter_finite_nonneg(n, r as u16, v as u16);
self.write_subexpfin(n, k, recentered_v)
}
fn write_s_refsubexpfin(
&mut self, n: u16, k: u16, r: i16, v: i16,
) -> Result<(), std::io::Error> {
/* Signed version of the above function */
self.write_refsubexpfin(
(n << 1) - 1,
k,
r + (n - 1) as i16,
v + (n - 1) as i16,
)
}
}
pub(crate) fn cdf_to_pdf<const CDF_LEN: usize>(
cdf: &[u16; CDF_LEN],
) -> [u16; CDF_LEN] {
let mut pdf = [0; CDF_LEN];
let mut z = 32768u16 >> EC_PROB_SHIFT;
for (d, &a) in pdf.iter_mut().zip(cdf.iter()) {
*d = z - (a >> EC_PROB_SHIFT);
z = a >> EC_PROB_SHIFT;
}
pdf
}
pub(crate) mod rust {
// Function to update the CDF for Writer calls that do so.
#[inline]
pub fn update_cdf<const N: usize>(cdf: &mut [u16; N], val: u32) {
use crate::context::CDF_LEN_MAX;
let nsymbs = cdf.len();
let mut rate = 3 + (nsymbs >> 1).min(2);
if let Some(count) = cdf.last_mut() {
rate += (*count >> 4) as usize;
*count += 1 - (*count >> 5);
} else {
return;
}
// Single loop (faster)
for (i, v) in
cdf[..nsymbs - 1].iter_mut().enumerate().take(CDF_LEN_MAX - 1)
{
if i as u32 >= val {
*v -= *v >> rate;
} else {
*v += (32768 - *v) >> rate;
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
const WINDOW_SIZE: i16 = 32;
const LOTS_OF_BITS: i16 = 0x4000;
#[derive(Debug)]
struct Reader<'a> {
buf: &'a [u8],
bptr: usize,
dif: ec_window,
rng: u16,
cnt: i16,
}
impl<'a> Reader<'a> {
fn new(buf: &'a [u8]) -> Self {
let mut r = Reader {
buf,
bptr: 0,
dif: (1 << (WINDOW_SIZE - 1)) - 1,
rng: 0x8000,
cnt: -15,
};
r.refill();
r
}
fn refill(&mut self) {
let mut s = WINDOW_SIZE - 9 - (self.cnt + 15);
while s >= 0 && self.bptr < self.buf.len() {
assert!(s <= WINDOW_SIZE - 8);
self.dif ^= (self.buf[self.bptr] as ec_window) << s;
self.cnt += 8;
s -= 8;
self.bptr += 1;
}
if self.bptr >= self.buf.len() {
self.cnt = LOTS_OF_BITS;
}
}
fn normalize(&mut self, dif: ec_window, rng: u32) {
assert!(rng <= 65536);
let d = rng.leading_zeros() - 16;
//let d = 16 - (32-rng.leading_zeros());
self.cnt -= d as i16;
/*This is equivalent to shifting in 1's instead of 0's.*/
self.dif = ((dif + 1) << d) - 1;
self.rng = (rng << d) as u16;
if self.cnt < 0 {
self.refill()
}
}
fn bool(&mut self, f: u32) -> bool {
assert!(f < 32768);
let r = self.rng as u32;
assert!(self.dif >> (WINDOW_SIZE - 16) < r);
assert!(32768 <= r);
let v = (((r >> 8) * (f >> EC_PROB_SHIFT)) >> (7 - EC_PROB_SHIFT))
+ EC_MIN_PROB;
let vw = v << (WINDOW_SIZE - 16);
let (dif, rng, ret) = if self.dif >= vw {
(self.dif - vw, r - v, false)
} else {
(self.dif, v, true)
};
self.normalize(dif, rng);
ret
}
fn symbol(&mut self, icdf: &[u16]) -> i32 {
let r = self.rng as u32;
assert!(self.dif >> (WINDOW_SIZE - 16) < r);
assert!(32768 <= r);
let n = icdf.len() as u32 - 1;
let c = self.dif >> (WINDOW_SIZE - 16);
let mut v = self.rng as u32;
let mut ret = 0i32;
let mut u = v;
v = ((r >> 8) * (icdf[ret as usize] as u32 >> EC_PROB_SHIFT))
>> (7 - EC_PROB_SHIFT);
v += EC_MIN_PROB * (n - ret as u32);
while c < v {
u = v;
ret += 1;
v = ((r >> 8) * (icdf[ret as usize] as u32 >> EC_PROB_SHIFT))
>> (7 - EC_PROB_SHIFT);
v += EC_MIN_PROB * (n - ret as u32);
}
assert!(v < u);
assert!(u <= r);
let new_dif = self.dif - (v << (WINDOW_SIZE - 16));
self.normalize(new_dif, u - v);
ret
}
}
#[test]
fn booleans() {
let mut w = WriterEncoder::new();
w.bool(false, 1);
w.bool(true, 2);
w.bool(false, 3);
w.bool(true, 1);
w.bool(true, 2);
w.bool(false, 3);
let b = w.done();
let mut r = Reader::new(&b);
assert!(!r.bool(1));
assert!(r.bool(2));
assert!(!r.bool(3));
assert!(r.bool(1));
assert!(r.bool(2));
assert!(!r.bool(3));
}
#[test]
fn cdf() {
let cdf = [7296, 3819, 1716, 0];
let mut w = WriterEncoder::new();
w.symbol(0, &cdf);
w.symbol(0, &cdf);
w.symbol(0, &cdf);
w.symbol(1, &cdf);
w.symbol(1, &cdf);
w.symbol(1, &cdf);
w.symbol(2, &cdf);
w.symbol(2, &cdf);
w.symbol(2, &cdf);
let b = w.done();
let mut r = Reader::new(&b);
assert_eq!(r.symbol(&cdf), 0);
assert_eq!(r.symbol(&cdf), 0);
assert_eq!(r.symbol(&cdf), 0);
assert_eq!(r.symbol(&cdf), 1);
assert_eq!(r.symbol(&cdf), 1);
assert_eq!(r.symbol(&cdf), 1);
assert_eq!(r.symbol(&cdf), 2);
assert_eq!(r.symbol(&cdf), 2);
assert_eq!(r.symbol(&cdf), 2);
}
#[test]
fn mixed() {
let cdf = [7296, 3819, 1716, 0];
let mut w = WriterEncoder::new();
w.symbol(0, &cdf);
w.bool(true, 2);
w.symbol(0, &cdf);
w.bool(true, 2);
w.symbol(0, &cdf);
w.bool(true, 2);
w.symbol(1, &cdf);
w.bool(true, 1);
w.symbol(1, &cdf);
w.bool(false, 2);
w.symbol(1, &cdf);
w.symbol(2, &cdf);
w.symbol(2, &cdf);
w.symbol(2, &cdf);
let b = w.done();
let mut r = Reader::new(&b);
assert_eq!(r.symbol(&cdf), 0);
assert!(r.bool(2));
assert_eq!(r.symbol(&cdf), 0);
assert!(r.bool(2));
assert_eq!(r.symbol(&cdf), 0);
assert!(r.bool(2));
assert_eq!(r.symbol(&cdf), 1);
assert!(r.bool(1));
assert_eq!(r.symbol(&cdf), 1);
assert!(!r.bool(2));
assert_eq!(r.symbol(&cdf), 1);
assert_eq!(r.symbol(&cdf), 2);
assert_eq!(r.symbol(&cdf), 2);
assert_eq!(r.symbol(&cdf), 2);
}
}