1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
// Copyright (c) 2019-2022, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
use crate::api::color::ChromaSampling;
use crate::api::ContextInner;
use crate::encoder::TEMPORAL_DELIMITER;
use crate::quantize::{ac_q, dc_q, select_ac_qi, select_dc_qi};
use crate::util::{
bexp64, bexp_q24, blog64, clamp, q24_to_q57, q57, q57_to_q24, Pixel,
};
use std::cmp;
// The number of frame sub-types for which we track distinct parameters.
// This does not include FRAME_SUBTYPE_SEF, because we don't need to do any
// parameter tracking for Show Existing Frame frames.
pub const FRAME_NSUBTYPES: usize = 4;
pub const FRAME_SUBTYPE_I: usize = 0;
pub const FRAME_SUBTYPE_P: usize = 1;
#[allow(unused)]
pub const FRAME_SUBTYPE_B0: usize = 2;
#[allow(unused)]
pub const FRAME_SUBTYPE_B1: usize = 3;
pub const FRAME_SUBTYPE_SEF: usize = 4;
const PASS_SINGLE: i32 = 0;
const PASS_1: i32 = 1;
const PASS_2: i32 = 2;
const PASS_2_PLUS_1: i32 = 3;
// Magic value at the start of the 2-pass stats file
const TWOPASS_MAGIC: i32 = 0x50324156;
// Version number for the 2-pass stats file
const TWOPASS_VERSION: i32 = 1;
// 4 byte magic + 4 byte version + 4 byte TU count + 4 byte SEF frame count
// + FRAME_NSUBTYPES*(4 byte frame count + 1 byte exp + 8 byte scale_sum)
pub(crate) const TWOPASS_HEADER_SZ: usize = 16 + FRAME_NSUBTYPES * (4 + 1 + 8);
// 4 byte frame type (show_frame and fti jointly coded) + 4 byte log_scale_q24
const TWOPASS_PACKET_SZ: usize = 8;
const SEF_BITS: i64 = 24;
// The scale of AV1 quantizer tables (relative to the pixel domain), i.e., Q3.
pub(crate) const QSCALE: i32 = 3;
// We clamp the actual I and B frame delays to a minimum of 10 to work
// within the range of values where later incrementing the delay works as
// designed.
// 10 is not an exact choice, but rather a good working trade-off.
const INTER_DELAY_TARGET_MIN: i32 = 10;
// The base quantizer for a frame is adjusted based on the frame type using the
// formula (log_qp*mqp + dqp), where log_qp is the base-2 logarithm of the
// "linear" quantizer (the actual factor by which coefficients are divided).
// Because log_qp has an implicit offset built in based on the scale of the
// coefficients (which depends on the pixel bit depth and the transform
// scale), we normalize the quantizer to the equivalent for 8-bit pixels with
// orthonormal transforms for the purposes of rate modeling.
const MQP_Q12: &[i32; FRAME_NSUBTYPES] = &[
// TODO: Use a const function once f64 operations in const functions are
// stable.
(1.0 * (1 << 12) as f64) as i32,
(1.0 * (1 << 12) as f64) as i32,
(1.0 * (1 << 12) as f64) as i32,
(1.0 * (1 << 12) as f64) as i32,
];
// The ratio 33_810_170.0 / 86_043_287.0 was derived by approximating the median
// of a change of 15 quantizer steps in the quantizer tables.
const DQP_Q57: &[i64; FRAME_NSUBTYPES] = &[
(-(33_810_170.0 / 86_043_287.0) * (1i64 << 57) as f64) as i64,
(0.0 * (1i64 << 57) as f64) as i64,
((33_810_170.0 / 86_043_287.0) * (1i64 << 57) as f64) as i64,
(2.0 * (33_810_170.0 / 86_043_287.0) * (1i64 << 57) as f64) as i64,
];
// For 8-bit-depth inter frames, log_q_y is derived from log_target_q with a
// linear model:
// log_q_y = log_target_q + (log_target_q >> 32) * Q_MODEL_MUL + Q_MODEL_ADD
// Derivation of the linear models:
// https://github.com/xiph/rav1e/blob/d02bdbd3b0b7b2cb9fc301031cc6a4e67a567a5c/doc/quantizer-weight-analysis.ipynb
#[rustfmt::skip]
const Q_MODEL_ADD: [i64; 4] = [
// 4:2:0
-0x24_4FE7_ECB3_DD90,
// 4:2:2
-0x37_41DA_38AD_0924,
// 4:4:4
-0x70_83BD_A626_311C,
// 4:0:0
0,
];
#[rustfmt::skip]
const Q_MODEL_MUL: [i64; 4] = [
// 4:2:0
0x8A0_50DD,
// 4:2:2
0x887_7666,
// 4:4:4
0x8D4_A712,
// 4:0:0
0,
];
#[rustfmt::skip]
const ROUGH_TAN_LOOKUP: &[u16; 18] = &[
0, 358, 722, 1098, 1491, 1910,
2365, 2868, 3437, 4096, 4881, 5850,
7094, 8784, 11254, 15286, 23230, 46817
];
// A digital approximation of a 2nd-order low-pass Bessel follower.
// We use this for rate control because it has fast reaction time, but is
// critically damped.
pub struct IIRBessel2 {
c: [i32; 2],
g: i32,
x: [i32; 2],
y: [i32; 2],
}
// alpha is Q24 in the range [0,0.5).
// The return value is 5.12.
fn warp_alpha(alpha: i32) -> i32 {
let i = ((alpha * 36) >> 24).min(16);
let t0 = ROUGH_TAN_LOOKUP[i as usize];
let t1 = ROUGH_TAN_LOOKUP[i as usize + 1];
let d = alpha * 36 - (i << 24);
((((t0 as i64) << 32) + (((t1 - t0) << 8) as i64) * (d as i64)) >> 32) as i32
}
// Compute Bessel filter coefficients with the specified delay.
// Return: Filter parameters (c[0], c[1], g).
fn iir_bessel2_get_parameters(delay: i32) -> (i32, i32, i32) {
// This borrows some code from an unreleased version of Postfish.
// See the recipe at http://unicorn.us.com/alex/2polefilters.html for details
// on deriving the filter coefficients.
// alpha is Q24
let alpha = (1 << 24) / delay;
// warp is 7.12 (5.12? the max value is 70386 in Q12).
let warp = warp_alpha(alpha).max(1) as i64;
// k1 is 9.12 (6.12?)
let k1 = 3 * warp;
// k2 is 16.24 (11.24?)
let k2 = k1 * warp;
// d is 16.15 (10.15?)
let d = ((((1 << 12) + k1) << 12) + k2 + 256) >> 9;
// a is 0.32, since d is larger than both 1.0 and k2
let a = (k2 << 23) / d;
// ik2 is 25.24
let ik2 = (1i64 << 48) / k2;
// b1 is Q56; in practice, the integer ranges between -2 and 2.
let b1 = 2 * a * (ik2 - (1i64 << 24));
// b2 is Q56; in practice, the integer ranges between -2 and 2.
let b2 = (1i64 << 56) - ((4 * a) << 24) - b1;
// All of the filter parameters are Q24.
(
((b1 + (1i64 << 31)) >> 32) as i32,
((b2 + (1i64 << 31)) >> 32) as i32,
((a + 128) >> 8) as i32,
)
}
impl IIRBessel2 {
pub fn new(delay: i32, value: i32) -> IIRBessel2 {
let (c0, c1, g) = iir_bessel2_get_parameters(delay);
IIRBessel2 { c: [c0, c1], g, x: [value, value], y: [value, value] }
}
// Re-initialize Bessel filter coefficients with the specified delay.
// This does not alter the x/y state, but changes the reaction time of the
// filter.
// Altering the time constant of a reactive filter without altering internal
// state is something that has to be done carefully, but our design operates
// at high enough delays and with small enough time constant changes to make
// it safe.
pub fn reinit(&mut self, delay: i32) {
let (c0, c1, g) = iir_bessel2_get_parameters(delay);
self.c[0] = c0;
self.c[1] = c1;
self.g = g;
}
pub fn update(&mut self, x: i32) -> i32 {
let c0 = self.c[0] as i64;
let c1 = self.c[1] as i64;
let g = self.g as i64;
let x0 = self.x[0] as i64;
let x1 = self.x[1] as i64;
let y0 = self.y[0] as i64;
let y1 = self.y[1] as i64;
let ya =
((((x as i64) + x0 * 2 + x1) * g + y0 * c0 + y1 * c1 + (1i64 << 23))
>> 24) as i32;
self.x[1] = self.x[0];
self.x[0] = x;
self.y[1] = self.y[0];
self.y[0] = ya;
ya
}
}
#[derive(Copy, Clone)]
struct RCFrameMetrics {
// The log base 2 of the scale factor for this frame in Q24 format.
log_scale_q24: i32,
// The frame type from pass 1
fti: usize,
// Whether or not the frame was hidden in pass 1
show_frame: bool,
// TODO: The input frame number corresponding to this frame in the input.
// input_frameno: u32
// TODO vfr: PTS
}
impl RCFrameMetrics {
const fn new() -> RCFrameMetrics {
RCFrameMetrics { log_scale_q24: 0, fti: 0, show_frame: false }
}
}
/// Rate control pass summary
///
/// It contains encoding information related to the whole previous
/// encoding pass.
#[derive(Debug, Default, Clone)]
pub struct RCSummary {
pub(crate) ntus: i32,
nframes: [i32; FRAME_NSUBTYPES + 1],
exp: [u8; FRAME_NSUBTYPES],
scale_sum: [i64; FRAME_NSUBTYPES],
pub(crate) total: i32,
}
// Backing storage to deserialize Summary and Per-Frame pass data
//
// Can store up to a full header size since it is the largest of the two
// packet kinds.
pub(crate) struct RCDeserialize {
// The current byte position in the frame metrics buffer.
pass2_buffer_pos: usize,
// In pass 2, this represents the number of bytes that are available in the
// input buffer.
pass2_buffer_fill: usize,
// Buffer for current frame metrics in pass 2.
pass2_buffer: [u8; TWOPASS_HEADER_SZ],
}
impl Default for RCDeserialize {
fn default() -> Self {
RCDeserialize {
pass2_buffer: [0; TWOPASS_HEADER_SZ],
pass2_buffer_pos: 0,
pass2_buffer_fill: 0,
}
}
}
impl RCDeserialize {
// Fill the backing storage by reading enough bytes from the
// buf slice until goal bytes are available for parsing.
//
// goal must be at most TWOPASS_HEADER_SZ.
pub(crate) fn buffer_fill(
&mut self, buf: &[u8], consumed: usize, goal: usize,
) -> usize {
let mut consumed = consumed;
while self.pass2_buffer_fill < goal && consumed < buf.len() {
self.pass2_buffer[self.pass2_buffer_fill] = buf[consumed];
self.pass2_buffer_fill += 1;
consumed += 1;
}
consumed
}
// Read the next n bytes as i64.
// n must be within 1 and 8
fn unbuffer_val(&mut self, n: usize) -> i64 {
let mut bytes = n;
let mut ret = 0;
let mut shift = 0;
while bytes > 0 {
bytes -= 1;
ret |= (self.pass2_buffer[self.pass2_buffer_pos] as i64) << shift;
self.pass2_buffer_pos += 1;
shift += 8;
}
ret
}
// Read metrics for the next frame.
fn parse_metrics(&mut self) -> Result<RCFrameMetrics, String> {
debug_assert!(self.pass2_buffer_fill >= TWOPASS_PACKET_SZ);
let ft_val = self.unbuffer_val(4);
let show_frame = (ft_val >> 31) != 0;
let fti = (ft_val & 0x7FFFFFFF) as usize;
// Make sure the frame type is valid.
if fti > FRAME_NSUBTYPES {
return Err("Invalid frame type".to_string());
}
let log_scale_q24 = self.unbuffer_val(4) as i32;
Ok(RCFrameMetrics { log_scale_q24, fti, show_frame })
}
// Read the summary header data.
pub(crate) fn parse_summary(&mut self) -> Result<RCSummary, String> {
// check the magic value and version number.
if self.unbuffer_val(4) != TWOPASS_MAGIC as i64 {
return Err("Magic value mismatch".to_string());
}
if self.unbuffer_val(4) != TWOPASS_VERSION as i64 {
return Err("Version number mismatch".to_string());
}
let mut s =
RCSummary { ntus: self.unbuffer_val(4) as i32, ..Default::default() };
// Make sure the file claims to have at least one TU.
// Otherwise we probably got the placeholder data from an aborted
// pass 1.
if s.ntus < 1 {
return Err("No TUs found in first pass summary".to_string());
}
let mut total: i32 = 0;
for nframes in s.nframes.iter_mut() {
let n = self.unbuffer_val(4) as i32;
if n < 0 {
return Err("Got negative frame count".to_string());
}
total = total
.checked_add(n)
.ok_or_else(|| "Frame count too large".to_string())?;
*nframes = n;
}
// We can't have more TUs than frames.
if s.ntus > total {
return Err("More TUs than frames".to_string());
}
s.total = total;
for exp in s.exp.iter_mut() {
*exp = self.unbuffer_val(1) as u8;
}
for scale_sum in s.scale_sum.iter_mut() {
*scale_sum = self.unbuffer_val(8);
if *scale_sum < 0 {
return Err("Got negative scale sum".to_string());
}
}
Ok(s)
}
}
pub struct RCState {
// The target bit-rate in bits per second.
target_bitrate: i32,
// The number of TUs over which to distribute the reservoir usage.
// We use TUs because in our leaky bucket model, we only add bits to the
// reservoir on TU boundaries.
reservoir_frame_delay: i32,
// Whether or not the reservoir_frame_delay was explicitly specified by the
// user, or is the default value.
reservoir_frame_delay_is_set: bool,
// The maximum quantizer index to allow (for the luma AC coefficients, other
// quantizers will still be adjusted to match).
maybe_ac_qi_max: Option<u8>,
// The minimum quantizer index to allow (for the luma AC coefficients).
ac_qi_min: u8,
// Will we drop frames to meet bitrate requirements?
drop_frames: bool,
// Do we respect the maximum reservoir fullness?
cap_overflow: bool,
// Can the reservoir go negative?
cap_underflow: bool,
// The log of the first-pass base quantizer.
pass1_log_base_q: i64,
// Two-pass mode state.
// PASS_SINGLE => 1-pass encoding.
// PASS_1 => 1st pass of 2-pass encoding.
// PASS_2 => 2nd pass of 2-pass encoding.
// PASS_2_PLUS_1 => 2nd pass of 2-pass encoding, but also emitting pass 1
// data again.
twopass_state: i32,
// The log of the number of pixels in a frame in Q57 format.
log_npixels: i64,
// The target average bits per Temporal Unit (input frame).
bits_per_tu: i64,
// The current bit reservoir fullness (bits available to be used).
reservoir_fullness: i64,
// The target buffer fullness.
// This is where we'd like to be by the last keyframe that appears in the
// next reservoir_frame_delay frames.
reservoir_target: i64,
// The maximum buffer fullness (total size of the buffer).
reservoir_max: i64,
// The log of estimated scale factor for the rate model in Q57 format.
//
// TODO: Convert to Q23 or figure out a better way to avoid overflow
// once 2-pass mode is introduced, if required.
log_scale: [i64; FRAME_NSUBTYPES],
// The exponent used in the rate model in Q6 format.
exp: [u8; FRAME_NSUBTYPES],
// The log of an estimated scale factor used to obtain the real framerate,
// for VFR sources or, e.g., 12 fps content doubled to 24 fps, etc.
// TODO vfr: log_vfr_scale: i64,
// Second-order lowpass filters to track scale and VFR.
scalefilter: [IIRBessel2; FRAME_NSUBTYPES],
// TODO vfr: vfrfilter: IIRBessel2,
// The number of frames of each type we have seen, for filter adaptation
// purposes.
// These are only 32 bits to guarantee that we can sum the scales over the
// whole file without overflow in a 64-bit int.
// That limits us to 2.268 years at 60 fps (minus 33% with re-ordering).
nframes: [i32; FRAME_NSUBTYPES + 1],
inter_delay: [i32; FRAME_NSUBTYPES - 1],
inter_delay_target: i32,
// The total accumulated estimation bias.
rate_bias: i64,
// The number of (non-Show Existing Frame) frames that have been encoded.
nencoded_frames: i64,
// The number of Show Existing Frames that have been emitted.
nsef_frames: i64,
// Buffer for current frame metrics in pass 1.
pass1_buffer: [u8; TWOPASS_HEADER_SZ],
// Whether or not the user has retrieved the pass 1 data for the last frame.
// For PASS_1 or PASS_2_PLUS_1 encoding, this is set to false after each
// frame is encoded, and must be set to true by calling twopass_out() before
// the next frame can be encoded.
pub pass1_data_retrieved: bool,
// Marks whether or not the user has retrieved the summary data at the end of
// the encode.
pass1_summary_retrieved: bool,
// Whether or not the user has provided enough data to encode in the second
// pass.
// For PASS_2 or PASS_2_PLUS_1 encoding, this is set to false after each
// frame, and must be set to true by calling twopass_in() before the next
// frame can be encoded.
pass2_data_ready: bool,
// TODO: Add a way to force the next frame to be a keyframe in 2-pass mode.
// Right now we are relying on keyframe detection to detect the same
// keyframes.
// The metrics for the previous frame.
prev_metrics: RCFrameMetrics,
// The metrics for the current frame.
cur_metrics: RCFrameMetrics,
// The buffered metrics for future frames.
frame_metrics: Vec<RCFrameMetrics>,
// The total number of frames still in use in the circular metric buffer.
nframe_metrics: usize,
// The index of the current frame in the circular metric buffer.
frame_metrics_head: usize,
// Data deserialization
des: RCDeserialize,
// The TU count encoded so far.
ntus: i32,
// The TU count for the whole file.
ntus_total: i32,
// The remaining TU count.
ntus_left: i32,
// The frame count of each frame subtype in the whole file.
nframes_total: [i32; FRAME_NSUBTYPES + 1],
// The sum of those counts.
nframes_total_total: i32,
// The number of frames of each subtype yet to be processed.
nframes_left: [i32; FRAME_NSUBTYPES + 1],
// The sum of the scale values for each frame subtype.
scale_sum: [i64; FRAME_NSUBTYPES],
// The number of TUs represented by the current scale sums.
scale_window_ntus: i32,
// The frame count of each frame subtype in the current scale window.
scale_window_nframes: [i32; FRAME_NSUBTYPES + 1],
// The sum of the scale values for each frame subtype in the current window.
scale_window_sum: [i64; FRAME_NSUBTYPES],
}
// TODO: Separate qi values for each color plane.
pub struct QuantizerParameters {
// The full-precision, unmodulated log quantizer upon which our modulated
// quantizer indices are based.
// This is only used to limit sudden quality changes from frame to frame, and
// as such is not adjusted when we encounter buffer overrun or underrun.
pub log_base_q: i64,
// The full-precision log quantizer modulated by the current frame type upon
// which our quantizer indices are based (including any adjustments to
// prevent buffer overrun or underrun).
// This is used when estimating the scale parameter once we know the actual
// bit usage of a frame.
pub log_target_q: i64,
pub dc_qi: [u8; 3],
pub ac_qi: [u8; 3],
pub lambda: f64,
pub dist_scale: [f64; 3],
}
const Q57_SQUARE_EXP_SCALE: f64 =
(2.0 * ::std::f64::consts::LN_2) / ((1i64 << 57) as f64);
// Daala style log-offset for chroma quantizers
// TODO: Optimal offsets for more configurations than just BT.709
fn chroma_offset(
log_target_q: i64, chroma_sampling: ChromaSampling,
) -> (i64, i64) {
let x = log_target_q.max(0);
// Gradient optimized for CIEDE2000+PSNR on subset3
let y = match chroma_sampling {
ChromaSampling::Cs400 => 0,
ChromaSampling::Cs420 => (x >> 2) + (x >> 6), // 0.266
ChromaSampling::Cs422 => (x >> 3) + (x >> 4) - (x >> 7), // 0.180
ChromaSampling::Cs444 => (x >> 4) + (x >> 5) + (x >> 8), // 0.098
};
// blog64(7) - blog64(4); blog64(5) - blog64(4)
(0x19D_5D9F_D501_0B37 - y, 0xA4_D3C2_5E68_DC58 - y)
}
impl QuantizerParameters {
fn new_from_log_q(
log_base_q: i64, log_target_q: i64, bit_depth: usize,
chroma_sampling: ChromaSampling, is_intra: bool,
log_isqrt_mean_scale: i64,
) -> QuantizerParameters {
let scale = log_isqrt_mean_scale + q57(QSCALE + bit_depth as i32 - 8);
let mut log_q_y = log_target_q;
if !is_intra && bit_depth == 8 {
log_q_y = log_target_q
+ (log_target_q >> 32) * Q_MODEL_MUL[chroma_sampling as usize]
+ Q_MODEL_ADD[chroma_sampling as usize];
}
let quantizer = bexp64(log_q_y + scale);
let (offset_u, offset_v) =
chroma_offset(log_q_y + log_isqrt_mean_scale, chroma_sampling);
let mono = chroma_sampling == ChromaSampling::Cs400;
let log_q_u = log_q_y + offset_u;
let log_q_v = log_q_y + offset_v;
let quantizer_u = bexp64(log_q_u + scale);
let quantizer_v = bexp64(log_q_v + scale);
let lambda = (::std::f64::consts::LN_2 / 6.0)
* (((log_target_q + log_isqrt_mean_scale) as f64)
* Q57_SQUARE_EXP_SCALE)
.exp();
let scale = |q| bexp64((log_target_q - q) * 2 + q57(16)) as f64 / 65536.;
let dist_scale = [scale(log_q_y), scale(log_q_u), scale(log_q_v)];
let base_q_idx = select_ac_qi(quantizer, bit_depth).max(1);
// delta_q only gets 6 bits + a sign bit, so it can differ by 63 at most.
let min_qi = base_q_idx.saturating_sub(63).max(1);
let max_qi = base_q_idx.saturating_add(63).min(255);
let clamp_qi = |qi: u8| qi.clamp(min_qi, max_qi);
QuantizerParameters {
log_base_q,
log_target_q,
// TODO: Allow lossless mode; i.e. qi == 0.
dc_qi: [
clamp_qi(select_dc_qi(quantizer, bit_depth)),
if mono { 0 } else { clamp_qi(select_dc_qi(quantizer_u, bit_depth)) },
if mono { 0 } else { clamp_qi(select_dc_qi(quantizer_v, bit_depth)) },
],
ac_qi: [
base_q_idx,
if mono { 0 } else { clamp_qi(select_ac_qi(quantizer_u, bit_depth)) },
if mono { 0 } else { clamp_qi(select_ac_qi(quantizer_v, bit_depth)) },
],
lambda,
dist_scale,
}
}
}
impl RCState {
pub fn new(
frame_width: i32, frame_height: i32, framerate_num: i64,
framerate_den: i64, target_bitrate: i32, maybe_ac_qi_max: Option<u8>,
ac_qi_min: u8, max_key_frame_interval: i32,
maybe_reservoir_frame_delay: Option<i32>,
) -> RCState {
// The default buffer size is set equal to 1.5x the keyframe interval, or 240
// frames; whichever is smaller, with a minimum of 12.
// For user set values, we enforce a minimum of 12.
// The interval is short enough to allow reaction, but long enough to allow
// looking into the next GOP (avoiding the case where the last frames
// before an I-frame get starved), in most cases.
// The 12 frame minimum gives us some chance to distribute bit estimation
// errors in the worst case.
let reservoir_frame_delay = maybe_reservoir_frame_delay
.unwrap_or_else(|| ((max_key_frame_interval * 3) >> 1).min(240))
.max(12);
// TODO: What are the limits on these?
let npixels = (frame_width as i64) * (frame_height as i64);
// Insane framerates or frame sizes mean insane bitrates.
// Let's not get carried away.
// We also subtract 16 bits from each temporal unit to account for the
// temporal delimiter, whose bits are not included in the frame sizes
// reported to update_state().
// TODO: Support constraints imposed by levels.
let bits_per_tu = clamp(
(target_bitrate as i64) * framerate_den / framerate_num,
40,
0x4000_0000_0000,
) - (TEMPORAL_DELIMITER.len() * 8) as i64;
let reservoir_max = bits_per_tu * (reservoir_frame_delay as i64);
// Start with a buffer fullness and fullness target of 50%.
let reservoir_target = (reservoir_max + 1) >> 1;
// Pick exponents and initial scales for quantizer selection.
let ibpp = npixels / bits_per_tu;
// These have been derived by encoding many clips at every quantizer
// and running a piecewise-linear regression in binary log space.
let (i_exp, i_log_scale) = if ibpp < 1 {
(48u8, blog64(36) - q57(QSCALE))
} else if ibpp < 4 {
(61u8, blog64(55) - q57(QSCALE))
} else {
(77u8, blog64(129) - q57(QSCALE))
};
let (p_exp, p_log_scale) = if ibpp < 2 {
(69u8, blog64(32) - q57(QSCALE))
} else if ibpp < 139 {
(104u8, blog64(84) - q57(QSCALE))
} else {
(83u8, blog64(19) - q57(QSCALE))
};
let (b0_exp, b0_log_scale) = if ibpp < 2 {
(84u8, blog64(30) - q57(QSCALE))
} else if ibpp < 92 {
(120u8, blog64(68) - q57(QSCALE))
} else {
(68u8, blog64(4) - q57(QSCALE))
};
let (b1_exp, b1_log_scale) = if ibpp < 2 {
(87u8, blog64(27) - q57(QSCALE))
} else if ibpp < 126 {
(139u8, blog64(84) - q57(QSCALE))
} else {
(61u8, blog64(1) - q57(QSCALE))
};
// TODO: Add support for "golden" P frames.
RCState {
target_bitrate,
reservoir_frame_delay,
reservoir_frame_delay_is_set: maybe_reservoir_frame_delay.is_some(),
maybe_ac_qi_max,
ac_qi_min,
drop_frames: false,
cap_overflow: true,
cap_underflow: false,
pass1_log_base_q: 0,
twopass_state: PASS_SINGLE,
log_npixels: blog64(npixels),
bits_per_tu,
reservoir_fullness: reservoir_target,
reservoir_target,
reservoir_max,
log_scale: [i_log_scale, p_log_scale, b0_log_scale, b1_log_scale],
exp: [i_exp, p_exp, b0_exp, b1_exp],
scalefilter: [
IIRBessel2::new(4, q57_to_q24(i_log_scale)),
IIRBessel2::new(INTER_DELAY_TARGET_MIN, q57_to_q24(p_log_scale)),
IIRBessel2::new(INTER_DELAY_TARGET_MIN, q57_to_q24(b0_log_scale)),
IIRBessel2::new(INTER_DELAY_TARGET_MIN, q57_to_q24(b1_log_scale)),
],
// TODO VFR
nframes: [0; FRAME_NSUBTYPES + 1],
inter_delay: [INTER_DELAY_TARGET_MIN; FRAME_NSUBTYPES - 1],
inter_delay_target: reservoir_frame_delay >> 1,
rate_bias: 0,
nencoded_frames: 0,
nsef_frames: 0,
pass1_buffer: [0; TWOPASS_HEADER_SZ],
pass1_data_retrieved: true,
pass1_summary_retrieved: false,
pass2_data_ready: false,
prev_metrics: RCFrameMetrics::new(),
cur_metrics: RCFrameMetrics::new(),
frame_metrics: Vec::new(),
nframe_metrics: 0,
frame_metrics_head: 0,
ntus: 0,
ntus_total: 0,
ntus_left: 0,
nframes_total: [0; FRAME_NSUBTYPES + 1],
nframes_total_total: 0,
nframes_left: [0; FRAME_NSUBTYPES + 1],
scale_sum: [0; FRAME_NSUBTYPES],
scale_window_ntus: 0,
scale_window_nframes: [0; FRAME_NSUBTYPES + 1],
scale_window_sum: [0; FRAME_NSUBTYPES],
des: RCDeserialize::default(),
}
}
pub(crate) fn select_first_pass_qi(
&self, bit_depth: usize, fti: usize, chroma_sampling: ChromaSampling,
) -> QuantizerParameters {
// Adjust the quantizer for the frame type, result is Q57:
let log_q = ((self.pass1_log_base_q + (1i64 << 11)) >> 12)
* (MQP_Q12[fti] as i64)
+ DQP_Q57[fti];
QuantizerParameters::new_from_log_q(
self.pass1_log_base_q,
log_q,
bit_depth,
chroma_sampling,
fti == 0,
0,
)
}
// TODO: Separate quantizers for Cb and Cr.
#[profiling::function]
pub(crate) fn select_qi<T: Pixel>(
&self, ctx: &ContextInner<T>, output_frameno: u64, fti: usize,
maybe_prev_log_base_q: Option<i64>, log_isqrt_mean_scale: i64,
) -> QuantizerParameters {
// Is rate control active?
if self.target_bitrate <= 0 {
// Rate control is not active.
// Derive quantizer directly from frame type.
let bit_depth = ctx.config.bit_depth;
let chroma_sampling = ctx.config.chroma_sampling;
let (log_base_q, log_q) =
Self::calc_flat_quantizer(ctx.config.quantizer as u8, bit_depth, fti);
QuantizerParameters::new_from_log_q(
log_base_q,
log_q,
bit_depth,
chroma_sampling,
fti == 0,
log_isqrt_mean_scale,
)
} else {
let mut nframes: [i32; FRAME_NSUBTYPES + 1] = [0; FRAME_NSUBTYPES + 1];
let mut log_scale: [i64; FRAME_NSUBTYPES] = self.log_scale;
let mut reservoir_tus = self.reservoir_frame_delay.min(self.ntus_left);
let mut reservoir_frames = 0;
let mut log_cur_scale = (self.scalefilter[fti].y[0] as i64) << 33;
match self.twopass_state {
// First pass of 2-pass mode: use a fixed base quantizer.
PASS_1 => {
return self.select_first_pass_qi(
ctx.config.bit_depth,
fti,
ctx.config.chroma_sampling,
);
}
// Second pass of 2-pass mode: we know exactly how much of each frame
// type there is in the current buffer window, and have estimates for
// the scales.
PASS_2 | PASS_2_PLUS_1 => {
let mut scale_window_sum: [i64; FRAME_NSUBTYPES] =
self.scale_window_sum;
let mut scale_window_nframes: [i32; FRAME_NSUBTYPES + 1] =
self.scale_window_nframes;
// Intentionally exclude Show Existing Frame frames from this.
for ftj in 0..FRAME_NSUBTYPES {
reservoir_frames += scale_window_nframes[ftj];
}
// If we're approaching the end of the file, add some slack to keep
// us from slamming into a rail.
// Our rate accuracy goes down, but it keeps the result sensible.
// We position the target where the first forced keyframe beyond the
// end of the file would be (for consistency with 1-pass mode).
// TODO: let mut buf_pad = self.reservoir_frame_delay.min(...);
// if buf_delay < buf_pad {
// buf_pad -= buf_delay;
// }
// else ...
// Otherwise, search for the last keyframe in the buffer window and
// target that.
// Currently we only do this when using a finite buffer.
// We could save the position of the last keyframe in the stream in
// the summary data and do it with a whole-file buffer as well, but
// it isn't likely to make a difference.
if !self.frame_metrics.is_empty() {
let mut fm_tail = self.frame_metrics_head + self.nframe_metrics;
if fm_tail >= self.frame_metrics.len() {
fm_tail -= self.frame_metrics.len();
}
let mut fmi = fm_tail;
loop {
if fmi == 0 {
fmi += self.frame_metrics.len();
}
fmi -= 1;
// Stop before we remove the first frame.
if fmi == self.frame_metrics_head {
break;
}
// If we find a keyframe, remove it and everything past it.
if self.frame_metrics[fmi].fti == FRAME_SUBTYPE_I {
while fmi != fm_tail {
let m = &self.frame_metrics[fmi];
let ftj = m.fti;
scale_window_nframes[ftj] -= 1;
if ftj < FRAME_NSUBTYPES {
scale_window_sum[ftj] -= bexp_q24(m.log_scale_q24);
reservoir_frames -= 1;
}
if m.show_frame {
reservoir_tus -= 1;
}
fmi += 1;
if fmi >= self.frame_metrics.len() {
fmi = 0;
}
}
// And stop scanning backwards.
break;
}
}
}
nframes = scale_window_nframes;
// If we're not using the same frame type as in pass 1 (because
// someone changed some encoding parameters), remove that scale
// estimate.
// We'll add a replacement for the correct frame type below.
if self.cur_metrics.fti != fti {
scale_window_nframes[self.cur_metrics.fti] -= 1;
if self.cur_metrics.fti != FRAME_SUBTYPE_SEF {
scale_window_sum[self.cur_metrics.fti] -=
bexp_q24(self.cur_metrics.log_scale_q24);
}
} else {
log_cur_scale = (self.cur_metrics.log_scale_q24 as i64) << 33;
}
// If we're approaching the end of the file, add some slack to keep
// us from slamming into a rail.
// Our rate accuracy goes down, but it keeps the result sensible.
// We position the target where the first forced keyframe beyond the
// end of the file would be (for consistency with 1-pass mode).
if reservoir_tus >= self.ntus_left
&& self.ntus_total as u64
> ctx.gop_input_frameno_start[&output_frameno]
{
let nfinal_gop_tus = self.ntus_total
- (ctx.gop_input_frameno_start[&output_frameno] as i32);
if ctx.config.max_key_frame_interval as i32 > nfinal_gop_tus {
let reservoir_pad = (ctx.config.max_key_frame_interval as i32
- nfinal_gop_tus)
.min(self.reservoir_frame_delay - reservoir_tus);
let (guessed_reservoir_frames, guessed_reservoir_tus) = ctx
.guess_frame_subtypes(
&mut nframes,
reservoir_tus + reservoir_pad,
);
reservoir_frames = guessed_reservoir_frames;
reservoir_tus = guessed_reservoir_tus;
}
}
// Blend in the low-pass filtered scale according to how many
// frames of each type we need to add compared to the actual sums in
// our window.
for ftj in 0..FRAME_NSUBTYPES {
let scale = scale_window_sum[ftj]
+ bexp_q24(self.scalefilter[ftj].y[0])
* (nframes[ftj] - scale_window_nframes[ftj]) as i64;
log_scale[ftj] = if nframes[ftj] > 0 {
blog64(scale) - blog64(nframes[ftj] as i64) - q57(24)
} else {
-self.log_npixels
};
}
}
// Single pass.
_ => {
// Figure out how to re-distribute bits so that we hit our fullness
// target before the last keyframe in our current buffer window
// (after the current frame), or the end of the buffer window,
// whichever comes first.
// Count the various types and classes of frames.
let (guessed_reservoir_frames, guessed_reservoir_tus) =
ctx.guess_frame_subtypes(&mut nframes, self.reservoir_frame_delay);
reservoir_frames = guessed_reservoir_frames;
reservoir_tus = guessed_reservoir_tus;
// TODO: Scale for VFR.
}
}
// If we've been missing our target, add a penalty term.
let rate_bias = (self.rate_bias / (self.nencoded_frames + 100))
* (reservoir_frames as i64);
// rate_total is the total bits available over the next
// reservoir_tus TUs.
let rate_total = self.reservoir_fullness - self.reservoir_target
+ rate_bias
+ (reservoir_tus as i64) * self.bits_per_tu;
// Find a target quantizer that meets our rate target for the
// specific mix of frame types we'll have over the next
// reservoir_frame frames.
// We model the rate<->quantizer relationship as
// rate = scale*(quantizer**-exp)
// In this case, we have our desired rate, an exponent selected in
// setup, and a scale that's been measured over our frame history,
// so we're solving for the quantizer.
// Exponentiation with arbitrary exponents is expensive, so we work
// in the binary log domain (binary exp and log aren't too bad):
// rate = exp2(log2(scale) - log2(quantizer)*exp)
// There's no easy closed form solution, so we bisection searh for it.
let bit_depth = ctx.config.bit_depth;
let chroma_sampling = ctx.config.chroma_sampling;
// TODO: Proper handling of lossless.
let mut log_qlo = blog64(ac_q(self.ac_qi_min, 0, bit_depth).get() as i64)
- q57(QSCALE + bit_depth as i32 - 8);
// The AC quantizer tables map to values larger than the DC quantizer
// tables, so we use that as the upper bound to make sure we can use
// the full table if needed.
let mut log_qhi = blog64(
ac_q(self.maybe_ac_qi_max.unwrap_or(255), 0, bit_depth).get() as i64,
) - q57(QSCALE + bit_depth as i32 - 8);
let mut log_base_q = (log_qlo + log_qhi) >> 1;
while log_qlo < log_qhi {
// Count bits contributed by each frame type using the model.
let mut bits = 0i64;
for ftj in 0..FRAME_NSUBTYPES {
// Modulate base quantizer by frame type.
let log_q = ((log_base_q + (1i64 << 11)) >> 12)
* (MQP_Q12[ftj] as i64)
+ DQP_Q57[ftj];
// All the fields here are Q57 except for the exponent, which is
// Q6.
bits += (nframes[ftj] as i64)
* bexp64(
log_scale[ftj] + self.log_npixels
- ((log_q + 32) >> 6) * (self.exp[ftj] as i64),
);
}
// The number of bits for Show Existing Frame frames is constant.
bits += (nframes[FRAME_SUBTYPE_SEF] as i64) * SEF_BITS;
let diff = bits - rate_total;
if diff > 0 {
log_qlo = log_base_q + 1;
} else if diff < 0 {
log_qhi = log_base_q - 1;
} else {
break;
}
log_base_q = (log_qlo + log_qhi) >> 1;
}
// If this was not one of the initial frames, limit the change in
// base quantizer to within [0.8*Q, 1.2*Q] where Q is the previous
// frame's base quantizer.
if let Some(prev_log_base_q) = maybe_prev_log_base_q {
log_base_q = clamp(
log_base_q,
prev_log_base_q - 0xA4_D3C2_5E68_DC58,
prev_log_base_q + 0xA4_D3C2_5E68_DC58,
);
}
// Modulate base quantizer by frame type.
let mut log_q = ((log_base_q + (1i64 << 11)) >> 12)
* (MQP_Q12[fti] as i64)
+ DQP_Q57[fti];
// The above allocation looks only at the total rate we'll accumulate
// in the next reservoir_frame_delay frames.
// However, we could overflow the bit reservoir on the very next
// frame.
// Check for that here if we're not using a soft target.
if self.cap_overflow {
// Allow 3% of the buffer for prediction error.
// This should be plenty, and we don't mind if we go a bit over.
// We only want to keep these bits from being completely wasted.
let margin = (self.reservoir_max + 31) >> 5;
// We want to use at least this many bits next frame.
let soft_limit = self.reservoir_fullness + self.bits_per_tu
- (self.reservoir_max - margin);
if soft_limit > 0 {
let log_soft_limit = blog64(soft_limit);
// If we're predicting we won't use that many bits...
// TODO: When using frame re-ordering, we should include the rate
// for all of the frames in the current TU.
// When there is more than one frame, there will be no direct
// solution for the required adjustment, however.
let log_scale_pixels = log_cur_scale + self.log_npixels;
let exp = self.exp[fti] as i64;
let mut log_q_exp = ((log_q + 32) >> 6) * exp;
if log_scale_pixels - log_q_exp < log_soft_limit {
// Scale the adjustment based on how far into the margin we are.
log_q_exp += ((log_scale_pixels - log_soft_limit - log_q_exp)
>> 32)
* ((margin.min(soft_limit) << 32) / margin);
log_q = ((log_q_exp + (exp >> 1)) / exp) << 6;
}
}
}
// We just checked we don't overflow the reservoir next frame, now
// check we don't underflow and bust the budget (when not using a
// soft target).
if self.maybe_ac_qi_max.is_none() {
// Compute the maximum number of bits we can use in the next frame.
// Allow 50% of the rate for a single frame for prediction error.
// This may not be enough for keyframes or sudden changes in
// complexity.
let log_hard_limit =
blog64(self.reservoir_fullness + (self.bits_per_tu >> 1));
// If we're predicting we'll use more than this...
// TODO: When using frame re-ordering, we should include the rate
// for all of the frames in the current TU.
// When there is more than one frame, there will be no direct
// solution for the required adjustment, however.
let log_scale_pixels = log_cur_scale + self.log_npixels;
let exp = self.exp[fti] as i64;
let mut log_q_exp = ((log_q + 32) >> 6) * exp;
if log_scale_pixels - log_q_exp > log_hard_limit {
// Force the target to hit our limit exactly.
log_q_exp = log_scale_pixels - log_hard_limit;
log_q = ((log_q_exp + (exp >> 1)) / exp) << 6;
// If that target is unreasonable, oh well; we'll have to drop.
}
}
if let Some(qi_max) = self.maybe_ac_qi_max {
let (max_log_base_q, max_log_q) =
Self::calc_flat_quantizer(qi_max, ctx.config.bit_depth, fti);
log_base_q = cmp::min(log_base_q, max_log_base_q);
log_q = cmp::min(log_q, max_log_q);
}
if self.ac_qi_min > 0 {
let (min_log_base_q, min_log_q) =
Self::calc_flat_quantizer(self.ac_qi_min, ctx.config.bit_depth, fti);
log_base_q = cmp::max(log_base_q, min_log_base_q);
log_q = cmp::max(log_q, min_log_q);
}
QuantizerParameters::new_from_log_q(
log_base_q,
log_q,
bit_depth,
chroma_sampling,
fti == 0,
log_isqrt_mean_scale,
)
}
}
// Computes a quantizer directly from the frame type and base quantizer index,
// without consideration for rate control.
fn calc_flat_quantizer(
base_qi: u8, bit_depth: usize, fti: usize,
) -> (i64, i64) {
// TODO: Rename "quantizer" something that indicates it is a quantizer
// index, and move it somewhere more sensible (or choose a better way to
// parameterize a "quality" configuration parameter).
// We use the AC quantizer as the source quantizer since its quantizer
// tables have unique entries, while the DC tables do not.
let ac_quantizer = ac_q(base_qi, 0, bit_depth).get() as i64;
// Pick the nearest DC entry since an exact match may be unavailable.
let dc_qi = select_dc_qi(ac_quantizer, bit_depth);
let dc_quantizer = dc_q(dc_qi, 0, bit_depth).get() as i64;
// Get the log quantizers as Q57.
let log_ac_q = blog64(ac_quantizer) - q57(QSCALE + bit_depth as i32 - 8);
let log_dc_q = blog64(dc_quantizer) - q57(QSCALE + bit_depth as i32 - 8);
// Target the midpoint of the chosen entries.
let log_base_q = (log_ac_q + log_dc_q + 1) >> 1;
// Adjust the quantizer for the frame type, result is Q57:
let log_q = ((log_base_q + (1i64 << 11)) >> 12) * (MQP_Q12[fti] as i64)
+ DQP_Q57[fti];
(log_base_q, log_q)
}
#[profiling::function]
pub fn update_state(
&mut self, bits: i64, fti: usize, show_frame: bool, log_target_q: i64,
trial: bool, droppable: bool,
) -> bool {
if trial {
assert!(self.needs_trial_encode(fti));
assert!(bits > 0);
}
let mut dropped = false;
// Update rate control only if rate control is active.
if self.target_bitrate > 0 {
let mut estimated_bits = 0;
let mut bits = bits;
let mut droppable = droppable;
let mut log_scale = q57(-64);
// Drop frames is also disabled for now in the case of infinite-buffer
// two-pass mode.
if !self.drop_frames
|| fti == FRAME_SUBTYPE_SEF
|| (self.twopass_state == PASS_2
|| self.twopass_state == PASS_2_PLUS_1)
&& !self.frame_metrics.is_empty()
{
droppable = false;
}
if fti == FRAME_SUBTYPE_SEF {
debug_assert!(bits == SEF_BITS);
debug_assert!(show_frame);
// Please don't make trial encodes of a SEF.
debug_assert!(!trial);
estimated_bits = SEF_BITS;
self.nsef_frames += 1;
} else {
let log_q_exp = ((log_target_q + 32) >> 6) * (self.exp[fti] as i64);
let prev_log_scale = self.log_scale[fti];
if bits <= 0 {
// We didn't code any blocks in this frame.
bits = 0;
dropped = true;
// TODO: Adjust VFR rate based on drop count.
} else {
// Compute the estimated scale factor for this frame type.
let log_bits = blog64(bits);
log_scale = (log_bits - self.log_npixels + log_q_exp).min(q57(16));
estimated_bits =
bexp64(prev_log_scale + self.log_npixels - log_q_exp);
if !trial {
self.nencoded_frames += 1;
}
}
}
let log_scale_q24 = q57_to_q24(log_scale);
// Special two-pass processing.
if self.twopass_state == PASS_2 || self.twopass_state == PASS_2_PLUS_1 {
// Pass 2 mode:
if !trial {
// Move the current metrics back one frame.
self.prev_metrics = self.cur_metrics;
// Back out the last frame's statistics from the sliding window.
let ftj = self.prev_metrics.fti;
self.nframes_left[ftj] -= 1;
self.scale_window_nframes[ftj] -= 1;
if ftj < FRAME_NSUBTYPES {
self.scale_window_sum[ftj] -=
bexp_q24(self.prev_metrics.log_scale_q24);
}
if self.prev_metrics.show_frame {
self.ntus_left -= 1;
self.scale_window_ntus -= 1;
}
// Free the corresponding entry in the circular buffer.
if !self.frame_metrics.is_empty() {
self.nframe_metrics -= 1;
self.frame_metrics_head += 1;
if self.frame_metrics_head >= self.frame_metrics.len() {
self.frame_metrics_head = 0;
}
}
// Mark us ready for the next 2-pass packet.
self.pass2_data_ready = false;
// Update state, so the user doesn't have to keep calling
// twopass_in() after they've fed in all the data when we're using
// a finite buffer.
self.twopass_in(None).unwrap_or(0);
}
}
if self.twopass_state == PASS_1 || self.twopass_state == PASS_2_PLUS_1 {
// Pass 1 mode: save the metrics for this frame.
self.prev_metrics.log_scale_q24 = log_scale_q24;
self.prev_metrics.fti = fti;
self.prev_metrics.show_frame = show_frame;
self.pass1_data_retrieved = false;
}
// Common to all passes:
if fti != FRAME_SUBTYPE_SEF && bits > 0 {
// If this is the first example of the given frame type we've seen,
// we immediately replace the default scale factor guess with the
// estimate we just computed using the first frame.
if trial || self.nframes[fti] <= 0 {
let f = &mut self.scalefilter[fti];
let x = log_scale_q24;
f.x[0] = x;
f.x[1] = x;
f.y[0] = x;
f.y[1] = x;
self.log_scale[fti] = log_scale;
// TODO: Duplicate regular P frame state for first golden P frame.
} else {
// Lengthen the time constant for the inter filters as we collect
// more frame statistics, until we reach our target.
if fti > 0
&& self.inter_delay[fti - 1] < self.inter_delay_target
&& self.nframes[fti] >= self.inter_delay[fti - 1]
{
self.inter_delay[fti - 1] += 1;
self.scalefilter[fti].reinit(self.inter_delay[fti - 1]);
}
// Update the low-pass scale filter for this frame type regardless
// of whether or not we will ultimately drop this frame.
self.log_scale[fti] =
q24_to_q57(self.scalefilter[fti].update(log_scale_q24));
}
// If this frame busts our budget, it must be dropped.
if droppable && self.reservoir_fullness + self.bits_per_tu < bits {
// TODO: Adjust VFR rate based on drop count.
bits = 0;
dropped = true;
} else {
// TODO: Update a low-pass filter to estimate the "real" frame rate
// taking timestamps and drops into account.
// This is only done if the frame is coded, as it needs the final
// count of dropped frames.
}
}
if !trial {
// Increment the frame count for filter adaptation purposes.
if !trial && self.nframes[fti] < ::std::i32::MAX {
self.nframes[fti] += 1;
}
self.reservoir_fullness -= bits;
if show_frame {
self.reservoir_fullness += self.bits_per_tu;
// TODO: Properly account for temporal delimiter bits.
}
// If we're too quick filling the buffer and overflow is capped, that
// rate is lost forever.
if self.cap_overflow {
self.reservoir_fullness =
self.reservoir_fullness.min(self.reservoir_max);
}
// If we're too quick draining the buffer and underflow is capped,
// don't try to make up that rate later.
if self.cap_underflow {
self.reservoir_fullness = self.reservoir_fullness.max(0);
}
// Adjust the bias for the real bits we've used.
self.rate_bias += estimated_bits - bits;
}
}
dropped
}
pub const fn needs_trial_encode(&self, fti: usize) -> bool {
self.target_bitrate > 0 && self.nframes[fti] == 0
}
pub(crate) const fn ready(&self) -> bool {
match self.twopass_state {
PASS_SINGLE => true,
PASS_1 => self.pass1_data_retrieved,
PASS_2 => self.pass2_data_ready,
_ => self.pass1_data_retrieved && self.pass2_data_ready,
}
}
fn buffer_val(&mut self, val: i64, bytes: usize, cur_pos: usize) -> usize {
let mut val = val;
let mut bytes = bytes;
let mut cur_pos = cur_pos;
while bytes > 0 {
bytes -= 1;
self.pass1_buffer[cur_pos] = val as u8;
cur_pos += 1;
val >>= 8;
}
cur_pos
}
pub(crate) fn select_pass1_log_base_q<T: Pixel>(
&self, ctx: &ContextInner<T>, output_frameno: u64,
) -> i64 {
assert_eq!(self.twopass_state, PASS_SINGLE);
self.select_qi(ctx, output_frameno, FRAME_SUBTYPE_I, None, 0).log_base_q
}
// Initialize the first pass and emit a placeholder summary
pub(crate) fn init_first_pass(
&mut self, maybe_pass1_log_base_q: Option<i64>,
) {
if let Some(pass1_log_base_q) = maybe_pass1_log_base_q {
assert_eq!(self.twopass_state, PASS_SINGLE);
// Pick first-pass qi for scale calculations.
self.pass1_log_base_q = pass1_log_base_q;
} else {
debug_assert!(self.twopass_state == PASS_2);
}
self.twopass_state += PASS_1;
}
// Prepare a placeholder summary
fn emit_placeholder_summary(&mut self) -> &[u8] {
// Fill in dummy summary values.
let mut cur_pos = 0;
cur_pos = self.buffer_val(TWOPASS_MAGIC as i64, 4, cur_pos);
cur_pos = self.buffer_val(TWOPASS_VERSION as i64, 4, cur_pos);
cur_pos = self.buffer_val(0, TWOPASS_HEADER_SZ - 8, cur_pos);
debug_assert!(cur_pos == TWOPASS_HEADER_SZ);
self.pass1_data_retrieved = true;
&self.pass1_buffer[..cur_pos]
}
// Frame-specific pass data
pub(crate) fn emit_frame_data(&mut self) -> Option<&[u8]> {
let mut cur_pos = 0;
let fti = self.prev_metrics.fti;
if fti < FRAME_NSUBTYPES {
self.scale_sum[fti] += bexp_q24(self.prev_metrics.log_scale_q24);
}
if self.prev_metrics.show_frame {
self.ntus += 1;
}
// If we have encoded too many frames, prevent us from reaching the
// ready state required to encode more.
if self.nencoded_frames + self.nsef_frames >= std::i32::MAX as i64 {
None?
}
cur_pos = self.buffer_val(
(self.prev_metrics.show_frame as i64) << 31
| self.prev_metrics.fti as i64,
4,
cur_pos,
);
cur_pos =
self.buffer_val(self.prev_metrics.log_scale_q24 as i64, 4, cur_pos);
debug_assert!(cur_pos == TWOPASS_PACKET_SZ);
self.pass1_data_retrieved = true;
Some(&self.pass1_buffer[..cur_pos])
}
// Summary of the whole encoding process.
pub(crate) fn emit_summary(&mut self) -> &[u8] {
let mut cur_pos = 0;
cur_pos = self.buffer_val(TWOPASS_MAGIC as i64, 4, cur_pos);
cur_pos = self.buffer_val(TWOPASS_VERSION as i64, 4, cur_pos);
cur_pos = self.buffer_val(self.ntus as i64, 4, cur_pos);
for fti in 0..=FRAME_NSUBTYPES {
cur_pos = self.buffer_val(self.nframes[fti] as i64, 4, cur_pos);
}
for fti in 0..FRAME_NSUBTYPES {
cur_pos = self.buffer_val(self.exp[fti] as i64, 1, cur_pos);
}
for fti in 0..FRAME_NSUBTYPES {
cur_pos = self.buffer_val(self.scale_sum[fti], 8, cur_pos);
}
debug_assert!(cur_pos == TWOPASS_HEADER_SZ);
self.pass1_summary_retrieved = true;
&self.pass1_buffer[..cur_pos]
}
// Emit either summary or frame-specific data depending on the previous call
pub(crate) fn twopass_out(
&mut self, done_processing: bool,
) -> Option<&[u8]> {
if !self.pass1_data_retrieved {
if self.twopass_state != PASS_1 && self.twopass_state != PASS_2_PLUS_1 {
Some(self.emit_placeholder_summary())
} else {
self.emit_frame_data()
}
} else if done_processing && !self.pass1_summary_retrieved {
Some(self.emit_summary())
} else {
// The data for this frame has already been retrieved.
None
}
}
// Initialize the rate control for second pass encoding
pub(crate) fn init_second_pass(&mut self) {
if self.twopass_state == PASS_SINGLE || self.twopass_state == PASS_1 {
// Initialize the second pass.
self.twopass_state += PASS_2;
// If the user requested a finite buffer, reserve the space required for
// it.
if self.reservoir_frame_delay_is_set {
debug_assert!(self.reservoir_frame_delay > 0);
// reservoir_frame_delay counts in TUs, but RCFrameMetrics are stored
// per frame (including Show Existing Frame frames).
// When re-ordering, we will have more frames than TUs.
// How many more?
// That depends on the re-ordering scheme used.
// Doubling the number of TUs and adding a fixed latency equal to the
// maximum number of reference frames we can store should be
// sufficient for any reasonable scheme, and keeps this code from
// depending too closely on the details of the scheme currently used
// by rav1e.
let nmetrics = (self.reservoir_frame_delay as usize) * 2 + 8;
self.frame_metrics.reserve_exact(nmetrics);
self.frame_metrics.resize(nmetrics, RCFrameMetrics::new());
}
}
}
pub(crate) fn setup_second_pass(&mut self, s: &RCSummary) {
self.ntus_total = s.ntus;
self.ntus_left = s.ntus;
self.nframes_total = s.nframes;
self.nframes_left = s.nframes;
self.nframes_total_total = s.nframes.iter().sum();
if self.frame_metrics.is_empty() {
self.reservoir_frame_delay = s.ntus;
self.scale_window_nframes = self.nframes_total;
self.scale_window_sum = s.scale_sum;
self.reservoir_max =
self.bits_per_tu * (self.reservoir_frame_delay as i64);
self.reservoir_target = (self.reservoir_max + 1) >> 1;
self.reservoir_fullness = self.reservoir_target;
} else {
self.reservoir_frame_delay = self.reservoir_frame_delay.min(s.ntus);
}
self.exp = s.exp;
}
// Parse the rate control summary
//
// It returns the amount of data consumed in the process or
// an empty error on parsing failure.
fn twopass_parse_summary(&mut self, buf: &[u8]) -> Result<usize, String> {
let consumed = self.des.buffer_fill(buf, 0, TWOPASS_HEADER_SZ);
if self.des.pass2_buffer_fill >= TWOPASS_HEADER_SZ {
self.des.pass2_buffer_pos = 0;
let s = self.des.parse_summary()?;
self.setup_second_pass(&s);
// Got a valid header.
// Set up pass 2.
// Clear the header data from the buffer to make room for the
// packet data.
self.des.pass2_buffer_fill = 0;
}
Ok(consumed)
}
// Return the size of the first buffer twopass_in expects
//
// It is the summary size (constant) + the number of frame data packets
// (variable depending on the configuration) it needs to starts encoding.
pub(crate) fn twopass_first_packet_size(&self) -> usize {
let frames_needed = if !self.frame_metrics.is_empty() {
// If we're not using whole-file buffering, we need at least one
// frame per buffer slot.
self.reservoir_frame_delay as usize
} else {
// Otherwise we need just one.
1
};
TWOPASS_HEADER_SZ + frames_needed * TWOPASS_PACKET_SZ
}
// Return the number of frame data packets to be parsed before
// the encoding process can continue.
pub(crate) fn twopass_in_frames_needed(&self) -> i32 {
if self.target_bitrate <= 0 {
return 0;
}
if self.frame_metrics.is_empty() {
return i32::from(!self.pass2_data_ready);
}
let mut cur_scale_window_nframes = 0;
let mut cur_nframes_left = 0;
for fti in 0..=FRAME_NSUBTYPES {
cur_scale_window_nframes += self.scale_window_nframes[fti];
cur_nframes_left += self.nframes_left[fti];
}
(self.reservoir_frame_delay - self.scale_window_ntus)
.clamp(0, cur_nframes_left - cur_scale_window_nframes)
}
pub(crate) fn parse_frame_data_packet(
&mut self, buf: &[u8],
) -> Result<(), String> {
if buf.len() != TWOPASS_PACKET_SZ {
return Err("Incorrect buffer size".to_string());
}
self.des.buffer_fill(buf, 0, TWOPASS_PACKET_SZ);
self.des.pass2_buffer_pos = 0;
let m = self.des.parse_metrics()?;
self.des.pass2_buffer_fill = 0;
if self.frame_metrics.is_empty() {
// We're using a whole-file buffer.
self.cur_metrics = m;
self.pass2_data_ready = true;
} else {
// Safety check
let frames_needed = self.twopass_in_frames_needed();
if frames_needed > 0 {
if self.nframe_metrics >= self.frame_metrics.len() {
return Err(
"Read too many frames without finding enough TUs".to_string(),
);
}
let mut fmi = self.frame_metrics_head + self.nframe_metrics;
if fmi >= self.frame_metrics.len() {
fmi -= self.frame_metrics.len();
}
self.nframe_metrics += 1;
self.frame_metrics[fmi] = m;
// And accumulate the statistics over the window.
self.scale_window_nframes[m.fti] += 1;
if m.fti < FRAME_NSUBTYPES {
self.scale_window_sum[m.fti] += bexp_q24(m.log_scale_q24);
}
if m.show_frame {
self.scale_window_ntus += 1;
}
if frames_needed == 1 {
self.pass2_data_ready = true;
self.cur_metrics = self.frame_metrics[self.frame_metrics_head];
}
} else {
return Err("No frames needed".to_string());
}
}
Ok(())
}
// Parse the rate control per-frame data
//
// If no buffer is passed return the amount of data it expects
// to consume next.
//
// If a properly sized buffer is passed it returns the amount of data
// consumed in the process or an empty error on parsing failure.
fn twopass_parse_frame_data(
&mut self, maybe_buf: Option<&[u8]>, mut consumed: usize,
) -> Result<usize, String> {
{
if self.frame_metrics.is_empty() {
// We're using a whole-file buffer.
if let Some(buf) = maybe_buf {
consumed = self.des.buffer_fill(buf, consumed, TWOPASS_PACKET_SZ);
if self.des.pass2_buffer_fill >= TWOPASS_PACKET_SZ {
self.des.pass2_buffer_pos = 0;
// Read metrics for the next frame.
self.cur_metrics = self.des.parse_metrics()?;
// Clear the buffer for the next frame.
self.des.pass2_buffer_fill = 0;
self.pass2_data_ready = true;
}
} else {
return Ok(TWOPASS_PACKET_SZ - self.des.pass2_buffer_fill);
}
} else {
// We're using a finite buffer.
let mut cur_scale_window_nframes = 0;
let mut cur_nframes_left = 0;
for fti in 0..=FRAME_NSUBTYPES {
cur_scale_window_nframes += self.scale_window_nframes[fti];
cur_nframes_left += self.nframes_left[fti];
}
let mut frames_needed = self.twopass_in_frames_needed();
while frames_needed > 0 {
if let Some(buf) = maybe_buf {
consumed = self.des.buffer_fill(buf, consumed, TWOPASS_PACKET_SZ);
if self.des.pass2_buffer_fill >= TWOPASS_PACKET_SZ {
self.des.pass2_buffer_pos = 0;
// Read the metrics for the next frame.
let m = self.des.parse_metrics()?;
// Add them to the circular buffer.
if self.nframe_metrics >= self.frame_metrics.len() {
return Err(
"Read too many frames without finding enough TUs"
.to_string(),
);
}
let mut fmi = self.frame_metrics_head + self.nframe_metrics;
if fmi >= self.frame_metrics.len() {
fmi -= self.frame_metrics.len();
}
self.nframe_metrics += 1;
self.frame_metrics[fmi] = m;
// And accumulate the statistics over the window.
self.scale_window_nframes[m.fti] += 1;
cur_scale_window_nframes += 1;
if m.fti < FRAME_NSUBTYPES {
self.scale_window_sum[m.fti] += bexp_q24(m.log_scale_q24);
}
if m.show_frame {
self.scale_window_ntus += 1;
}
frames_needed = (self.reservoir_frame_delay
- self.scale_window_ntus)
.clamp(0, cur_nframes_left - cur_scale_window_nframes);
// Clear the buffer for the next frame.
self.des.pass2_buffer_fill = 0;
} else {
// Go back for more data.
break;
}
} else {
return Ok(
TWOPASS_PACKET_SZ * (frames_needed as usize)
- self.des.pass2_buffer_fill,
);
}
}
// If we've got all the frames we need, fill in the current metrics.
// We're ready to go.
if frames_needed <= 0 {
self.cur_metrics = self.frame_metrics[self.frame_metrics_head];
// Mark us ready for the next frame.
self.pass2_data_ready = true;
}
}
}
Ok(consumed)
}
// If called without a buffer it will return the size of the next
// buffer it expects.
//
// If called with a buffer it will consume it fully.
// It returns Ok(0) if the buffer had been parsed or Err(())
// if the buffer hadn't been enough or other errors happened.
pub(crate) fn twopass_in(
&mut self, maybe_buf: Option<&[u8]>,
) -> Result<usize, String> {
let mut consumed = 0;
self.init_second_pass();
// If we haven't got a valid summary header yet, try to parse one.
if self.nframes_total[FRAME_SUBTYPE_I] == 0 {
self.pass2_data_ready = false;
if let Some(buf) = maybe_buf {
consumed = self.twopass_parse_summary(buf)?
} else {
return Ok(self.twopass_first_packet_size());
}
}
if self.nframes_total[FRAME_SUBTYPE_I] > 0 {
if self.nencoded_frames + self.nsef_frames
>= self.nframes_total_total as i64
{
// We don't want any more data after the last frame, and we don't want
// to allow any more frames to be encoded.
self.pass2_data_ready = false;
} else if !self.pass2_data_ready {
return self.twopass_parse_frame_data(maybe_buf, consumed);
}
}
Ok(consumed)
}
}