1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#![warn(clippy::all)]
#![allow(clippy::upper_case_acronyms)]
#![doc(html_favicon_url = "https://huggingface.co/favicon.ico")]
#![doc(html_logo_url = "https://huggingface.co/landing/assets/huggingface_logo.svg")]
//! The core of `tokenizers`, written in Rust.
//! Provides an implementation of today's most used tokenizers, with a focus on performance and
//! versatility.
//!
//! # What is a Tokenizer
//!
//! A Tokenizer works as a pipeline, it processes some raw text as input and outputs an `Encoding`.
//! The various steps of the pipeline are:
//!
//! 1. The `Normalizer`: in charge of normalizing the text. Common examples of normalization are
//! the [unicode normalization standards](https://unicode.org/reports/tr15/#Norm_Forms), such as `NFD` or `NFKC`.
//! More details about how to use the `Normalizers` are available on the
//! [Hugging Face blog](https://huggingface.co/docs/tokenizers/components#normalizers)
//! 2. The `PreTokenizer`: in charge of creating initial words splits in the text. The most common way of
//! splitting text is simply on whitespace.
//! 3. The `Model`: in charge of doing the actual tokenization. An example of a `Model` would be
//! `BPE` or `WordPiece`.
//! 4. The `PostProcessor`: in charge of post-processing the `Encoding` to add anything relevant
//! that, for example, a language model would need, such as special tokens.
//!
//! ## Loading a pretrained tokenizer from the Hub
//! ```
//! use tokenizers::tokenizer::{Result, Tokenizer};
//!
//! fn main() -> Result<()> {
//! # #[cfg(feature = "http")]
//! # {
//! let tokenizer = Tokenizer::from_pretrained("bert-base-cased", None)?;
//!
//! let encoding = tokenizer.encode("Hey there!", false)?;
//! println!("{:?}", encoding.get_tokens());
//! # }
//! Ok(())
//! }
//! ```
//!
//! ## Deserialization and tokenization example
//!
//! ```no_run
//! use tokenizers::tokenizer::{Result, Tokenizer, EncodeInput};
//! use tokenizers::models::bpe::BPE;
//!
//! fn main() -> Result<()> {
//! let bpe_builder = BPE::from_file("./path/to/vocab.json", "./path/to/merges.txt");
//! let bpe = bpe_builder
//! .dropout(0.1)
//! .unk_token("[UNK]".into())
//! .build()?;
//!
//! let mut tokenizer = Tokenizer::new(bpe);
//!
//! let encoding = tokenizer.encode("Hey there!", false)?;
//! println!("{:?}", encoding.get_tokens());
//!
//! Ok(())
//! }
//! ```
//!
//! ## Training and serialization example
//!
//! ```no_run
//! use tokenizers::decoders::DecoderWrapper;
//! use tokenizers::models::bpe::{BpeTrainerBuilder, BPE};
//! use tokenizers::normalizers::{strip::Strip, unicode::NFC, utils::Sequence, NormalizerWrapper};
//! use tokenizers::pre_tokenizers::byte_level::ByteLevel;
//! use tokenizers::pre_tokenizers::PreTokenizerWrapper;
//! use tokenizers::processors::PostProcessorWrapper;
//! use tokenizers::{AddedToken, Model, Result, TokenizerBuilder};
//!
//! use std::path::Path;
//!
//! fn main() -> Result<()> {
//! let vocab_size: usize = 100;
//!
//! let mut trainer = BpeTrainerBuilder::new()
//! .show_progress(true)
//! .vocab_size(vocab_size)
//! .min_frequency(0)
//! .special_tokens(vec![
//! AddedToken::from(String::from("<s>"), true),
//! AddedToken::from(String::from("<pad>"), true),
//! AddedToken::from(String::from("</s>"), true),
//! AddedToken::from(String::from("<unk>"), true),
//! AddedToken::from(String::from("<mask>"), true),
//! ])
//! .build();
//!
//! let mut tokenizer = TokenizerBuilder::new()
//! .with_model(BPE::default())
//! .with_normalizer(Some(Sequence::new(vec![
//! Strip::new(true, true).into(),
//! NFC.into(),
//! ])))
//! .with_pre_tokenizer(Some(ByteLevel::default()))
//! .with_post_processor(Some(ByteLevel::default()))
//! .with_decoder(Some(ByteLevel::default()))
//! .build()?;
//!
//! let pretty = false;
//! tokenizer
//! .train_from_files(
//! &mut trainer,
//! vec!["path/to/vocab.txt".to_string()],
//! )?
//! .save("tokenizer.json", pretty)?;
//!
//! Ok(())
//! }
//! ```
//!
//! # Additional information
//!
//! - tokenizers is designed to leverage CPU parallelism when possible. The level of parallelism is determined
//! by the total number of core/threads your CPU provides but this can be tuned by setting the `RAYON_RS_NUM_THREADS`
//! environment variable. As an example setting `RAYON_RS_NUM_THREADS=4` will allocate a maximum of 4 threads.
//! **_Please note this behavior may evolve in the future_**
//!
//! # Features
//! **progressbar**: The progress bar visualization is enabled by default. It might be disabled if
//! compilation for certain targets is not supported by the [termios](https://crates.io/crates/termios)
//! dependency of the [indicatif](https://crates.io/crates/indicatif) progress bar.
#[macro_use]
extern crate log;
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate derive_builder;
#[macro_use]
pub mod utils;
pub mod decoders;
pub mod models;
pub mod normalizers;
pub mod pre_tokenizers;
pub mod processors;
pub mod tokenizer;
// Re-export from tokenizer
pub use tokenizer::*;
// Re-export also parallelism utils
pub use utils::parallelism;
// Re-export for from_pretrained
#[cfg(feature = "http")]
pub use utils::from_pretrained::FromPretrainedParameters;