1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
use super::{
normalizer::Range, Model, NormalizedString, Normalizer, Offsets, PreTokenizedString, Token,
};
use aho_corasick::{AhoCorasick, AhoCorasickBuilder, MatchKind};
use regex::Regex;
use serde::{ser::SerializeSeq, Deserialize, Serialize, Serializer};
use std::collections::{HashMap, HashSet};
/// Represent a token added by the user on top of the existing Model vocabulary.
/// AddedToken can be configured to specify the behavior they should have in various situations
/// like:
/// - Whether they should only match single words
/// - Whether to include any whitespace on its left or right
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct AddedToken {
/// The content of the added token
pub content: String,
/// Whether this token must be a single word or can break words
pub single_word: bool,
/// Whether this token should strip whitespaces on its left
pub lstrip: bool,
/// Whether this token should strip whitespaces on its right
pub rstrip: bool,
/// Whether this token should be normalized
pub normalized: bool,
/// Whether this token is special
pub special: bool,
}
impl AddedToken {
/// Build this token from the given content, specifying if it is intented to be a
/// special token. Special tokens are not normalized by default.
pub fn from<S: Into<String>>(content: S, special: bool) -> Self {
Self {
content: content.into(),
normalized: !special,
special,
..Default::default()
}
}
/// Specify whether this token should only match on whole single words, and never
/// part of a word.
#[must_use]
pub fn single_word(mut self, single_word: bool) -> Self {
self.single_word = single_word;
self
}
/// Specify whether this token should include all the whitespaces on its left, in
/// order to strip them out.
#[must_use]
pub fn lstrip(mut self, lstrip: bool) -> Self {
self.lstrip = lstrip;
self
}
/// Specify whether this token should include all the whitespaces on its right, in
/// order to strip them out.
#[must_use]
pub fn rstrip(mut self, rstrip: bool) -> Self {
self.rstrip = rstrip;
self
}
/// Specify whether this token should be normalized and match against its normalized
/// version in the input text.
#[must_use]
pub fn normalized(mut self, normalized: bool) -> Self {
self.normalized = normalized;
self
}
/// Specify whether this token is special, meaning if it should be skipped when decoding
#[must_use]
pub fn special(mut self, special: bool) -> Self {
self.special = special;
self
}
}
impl Default for AddedToken {
fn default() -> Self {
Self {
content: String::new(),
single_word: false,
lstrip: false,
rstrip: false,
normalized: true,
special: false,
}
}
}
// AddedTokens can be updated if value changed
impl std::hash::Hash for AddedToken {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.content.hash(state);
}
}
type MatchingSet = (AhoCorasick, Vec<u32>);
lazy_static! {
static ref STARTS_WITH_WORD: Regex = Regex::new(r"^\w").unwrap();
static ref ENDS_WITH_WORD: Regex = Regex::new(r"\w$").unwrap();
static ref RIGHTMOST_SPACE_AT_START: Regex = Regex::new(r"^\s*").unwrap();
static ref LEFTMOST_SPACE_AT_END: Regex = Regex::new(r"\s*$").unwrap();
}
fn ends_with_word(sentence: &str) -> bool {
ENDS_WITH_WORD.is_match(sentence)
}
fn starts_with_word(sentence: &str) -> bool {
STARTS_WITH_WORD.is_match(sentence)
}
fn space_leftmost_at_end(sentence: &str) -> usize {
if let Some(match_) = LEFTMOST_SPACE_AT_END.find(sentence) {
match_.start()
} else {
sentence.len()
}
}
fn space_rightmost_at_start(sentence: &str) -> usize {
if let Some(match_) = RIGHTMOST_SPACE_AT_START.find(sentence) {
match_.end()
} else {
0
}
}
///
/// A vocabulary built on top of the Model
///
/// This provides a way to add new vocabulary to a Tokenizer that has already been trained,
/// in a previous process, maybe by someone else. This is especially interesting in the case
/// of fine-tunings, where we want to finetune a model while adding some new functionalities
/// using some new special tokens, or maybe add some tokens in the case of unknown tokens, etc.
///
/// One of the reasons we need to handle these tokens outside of the model is simply that
/// for many models, it is not possible to add new tokens after the training process. For example,
/// using BPE, the training process generates merges pairs along the vocabulary, and any token
/// in the vocabulary can be decomposed in other tokens, down to the original alphabet. If we
/// were to add new tokens after this training process, we couldn't make sure the merges pairs
/// exist as required.
///
#[derive(Clone, Debug)]
pub(super) struct AddedVocabulary {
/// Contains the mapping from String (token content) to ID. This map contains both special
/// tokens and classic added tokens that were added to the this vocabulary.
added_tokens_map: HashMap<String, u32>,
/// Contains the mapping from ID to AddedToken for all the added tokens, both special
/// and classic.
added_tokens_map_r: HashMap<u32, AddedToken>,
/// Contains only the classic AddedToken, in the specific order the user gave them.
added_tokens: Vec<AddedToken>,
/// Contains only the special AddedToken, in the specific order the user gave them.
special_tokens: Vec<AddedToken>,
/// A Set, containing all the special token for easy access while decoding. This let's
/// us remove them easily with an O(1) complexity.
special_tokens_set: HashSet<String>,
/// A RegexSet containing all the non-normalized patterns used to split on AddedTokens
split_trie: MatchingSet,
/// A RegexSet containing all the normalized patterns used to split on AddedTokens
split_normalized_trie: MatchingSet,
/// Whether or not special tokens should be splitted when encoding. This is equivalent to ignoring them
encode_special_tokens: bool,
}
impl AddedVocabulary {
pub fn new() -> Self {
let trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build::<_, &&[u8]>([])
.expect("The trie should build correctly");
let normalized_trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build::<_, &&[u8]>([])
.expect("The normalized trie should build correctly");
Self {
added_tokens_map: HashMap::new(),
added_tokens_map_r: HashMap::new(),
added_tokens: vec![],
special_tokens: vec![],
special_tokens_set: HashSet::new(),
split_trie: (trie, vec![]),
split_normalized_trie: (normalized_trie, vec![]),
encode_special_tokens: false,
}
}
/// Size of the additional vocabulary
#[allow(dead_code)] // Suppress the "method is never used" warning
pub fn len(&self) -> usize {
self.added_tokens_map.len()
}
/// Get the additional vocabulary
pub fn get_vocab(&self) -> &HashMap<String, u32> {
&self.added_tokens_map
}
/// Get the additional vocabulary with the AddedTokens
pub fn get_added_tokens_decoder(&self) -> &HashMap<u32, AddedToken> {
&self.added_tokens_map_r
}
/// Get the id matching one of our token if it exists
pub fn token_to_id(&self, token: &str, model: &impl Model) -> Option<u32> {
self.added_tokens_map
.get(token)
.copied()
.or_else(|| model.token_to_id(token))
}
/// Get the token matching the given id if it exists
pub fn id_to_token(&self, id: u32, model: &impl Model) -> Option<String> {
self.added_tokens_map_r
.get(&id)
.map(|t| t.content.clone())
.or_else(|| model.id_to_token(id))
}
//
pub fn set_encode_special_tokens(&mut self, value: bool) {
self.encode_special_tokens = value;
}
pub fn get_encode_special_tokens(&self) -> bool {
self.encode_special_tokens
}
/// Check if a token is a special token
pub fn is_special_token(&self, token: &str) -> bool {
self.special_tokens_set.contains(token)
}
/// Add some special tokens to the vocabulary
pub fn add_special_tokens<N: Normalizer>(
&mut self,
tokens: &[AddedToken],
model: &impl Model,
normalizer: Option<&N>,
) -> usize {
self.add_tokens(tokens, model, normalizer)
}
/// Add some tokens to the vocabulary
pub fn add_tokens<N: Normalizer>(
&mut self,
tokens: &[AddedToken],
model: &impl Model,
normalizer: Option<&N>,
) -> usize {
// Handle special tokens (if any)
for token in tokens {
if token.special
&& !token.content.is_empty()
&& !self.special_tokens_set.contains(&token.content)
{
self.special_tokens.push(token.to_owned());
self.special_tokens_set.insert(token.content.clone());
}
}
// Then we delegate to `add_tokens`, that will take care of refreshing added tokens too.
let mut ignored = 0;
for token in tokens {
if token.content.is_empty() || self.added_tokens_map_r.values().any(|val| val == token)
{
ignored += 1;
continue;
}
// If a token is already part of the vocabulary, we mark it as added
let new_id = if let Some(new_id) = self.token_to_id(&token.content, model) {
new_id
} else {
self.added_tokens_map.values().cloned().max().map_or(
model.get_vocab_size() as u32,
|max| {
if (max >= model.get_vocab_size() as u32) || model.get_vocab_size() == 0 {
max + 1
} else {
model.get_vocab_size() as u32
}
},
)
};
// Make sure we modify the previous entry
self.added_tokens_map
.entry(token.content.clone())
.and_modify(|old_id| *old_id = new_id)
.or_insert_with(|| new_id);
// Update the current revert operation
self.added_tokens_map_r
.entry(new_id)
.and_modify(|t| *t = token.clone())
.or_insert_with(|| token.clone());
// Make sure to remove previous entry (if the token gets a new id)
// Finally add the token to the classic set if special
if !self.special_tokens_set.contains(&token.content) {
self.added_tokens.push(token.clone());
}
}
self.refresh_added_tokens(model, normalizer);
// Return the number of added tokens
tokens.len() - ignored
}
/// Reconstruct our internal RegexSet when new tokens are added to the vocabulary.
///
/// We keep two different RegexSet, one that will take care of matching against the
/// non-normalized string, and one matching against the normalized one.
fn refresh_added_tokens<N: Normalizer>(&mut self, model: &impl Model, normalizer: Option<&N>) {
type TupleTokenId<'a> = (&'a AddedToken, u32);
let (normalized, non_normalized): (Vec<TupleTokenId>, Vec<TupleTokenId>) = self
.special_tokens
.iter()
.chain(self.added_tokens.iter())
.map(|token| {
(
token,
self.token_to_id(&token.content, model)
.expect("Missing additional token"),
)
})
.partition(|(token, _)| token.normalized);
let (tokens, ids): (Vec<&AddedToken>, Vec<u32>) = non_normalized.into_iter().unzip();
let trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build(tokens.iter().map(|token| &token.content))
.expect("Failed to build tried when refreshing tokens");
self.split_trie = (trie, ids);
let (ntokens, nids): (Vec<&AddedToken>, Vec<u32>) = normalized.into_iter().unzip();
let patterns: Vec<_> = ntokens
.iter()
.map(|token| {
let mut content = NormalizedString::from(token.content.as_ref());
if let Some(n) = normalizer {
n.normalize(&mut content).unwrap();
}
content
})
.collect();
let normalized_trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build(patterns.iter().map(|content| content.get()))
.expect("Failed to build tried when refreshing tokens (normalized)");
self.split_normalized_trie = (normalized_trie, nids);
}
/// Find any AddedToken in the given sentence, using the provided MatchingSet.
/// This method returns a list "splits", each of them being a pair of Offsets
/// and an optional ID if it is an AddedToken.
/// The list of splits cover the entire input string.
fn find_matches(&self, sentence: &str, split_re: &MatchingSet) -> Vec<(Option<u32>, Offsets)> {
if sentence.is_empty() {
return vec![(None, (0, 0))];
}
let mut start_offset = 0;
let mut splits = vec![];
for mat in split_re.0.find_iter(sentence) {
let mut start = mat.start();
let mut stop = mat.end();
let aho_id = mat.pattern();
let id = split_re.1[aho_id];
let added_token = &self.added_tokens_map_r.get(&id).unwrap();
if self.encode_special_tokens && self.special_tokens_set.contains(&added_token.content)
{
continue;
}
if added_token.single_word {
let start_space = start == 0 || !ends_with_word(&sentence[..start]);
let stop_space = stop == sentence.len() || !starts_with_word(&sentence[stop..]);
if !stop_space || !start_space {
// Discard not single word
continue;
}
}
if added_token.lstrip {
// This will be strictly inferior to start and in correct sentence offset
let newstart = space_leftmost_at_end(&sentence[..start]);
// The previous match could have already matched those spaces
// Ignore them if it's already matched
start = std::cmp::max(newstart, start_offset);
}
if added_token.rstrip {
// This will starting a the stop+1 character, so we need
// to add the previous stop value
stop += space_rightmost_at_start(&sentence[stop..])
}
if start_offset < start {
splits.push((None, (start_offset, start)));
}
splits.push((Some(id), (start, stop)));
start_offset = stop;
}
let total_byte_len = sentence.len();
if start_offset != total_byte_len {
splits.push((None, (start_offset, total_byte_len)));
}
splits
}
/// Split the input sentence to extract anything we found from the `MatchingSet`, as well as
/// the list of corresponding IDs
/// The list of IDs have the exact same number of elements than the Iterator.
fn split_with_indices(
&self,
sentence: NormalizedString,
split_re: &MatchingSet,
) -> Vec<(NormalizedString, Option<Vec<Token>>)> {
self.find_matches(sentence.get(), split_re)
.into_iter()
.map(|(id, byte_offsets)| {
let slice = sentence
.slice(Range::Normalized(byte_offsets.0..byte_offsets.1))
.expect("AddedVocabulary bad split");
if let Some(id) = id {
let value = slice.get().to_owned();
let len = value.len();
(slice, Some(vec![Token::new(id, value, (0, len))]))
} else {
(slice, None)
}
})
.collect()
}
/// Extract the additional vocabulary from the given sentence, normalizing it along the way.
///
/// Some tokens should match against their normalized representation, as well as the
/// non-normalized one. For example, when we expect to extract the token `yesterday` in the
/// input sentence `I read a book Yesterday`, if the normalizer is supposed to lowercase
/// everything, we expect a match.
pub fn extract_and_normalize<N: Normalizer>(
&self,
normalizer: Option<&N>,
sequence: &str,
) -> PreTokenizedString {
let mut pretokenized: PreTokenizedString = sequence.into();
// 1. We extract all the non-normalized tokens from the non-normalized string
pretokenized
.split(|_, sequence| Ok(self.split_with_indices(sequence, &self.split_trie)))
.expect("AddedVocabulary bad split");
// <s> normalized = False
// "I read a book <s>Hey" -> "I read a book", " <s>", "Hey"
// </s> normalized = True -> "▁</s>"
// "I read a book</s>Hey" -> "I read a book</s>Hey"
// Day normalized = True -> "Day"
// "I read a book monday" -> "I read a book monday"
// [DAY] normalized = False -> "Day"
// "I read a [DAY] monday" -> "I read a " "[DAY]", "book monday"
// 320055
// 2. Then extract the normalized tokens from the normalized pieces of the string
pretokenized
.split(|_, mut sequence| {
normalizer.map(|n| n.normalize(&mut sequence));
Ok(self.split_with_indices(sequence, &self.split_normalized_trie))
})
.expect("AddedVocabulary bad split");
// ["I read a book", " <s>", "Hey"] -> ["▁I read a book", "▁ <s>", "▁Hey"]
// ["▁I read a book", "▁ <s>", "▁Hey"] -> [.., "▁ ", "<s>", "▁Hey"]
// </s> normalized = True -> "▁</s>"
// "I read a book</s>Hey" -> ["▁I read a book", "<","/","s",">", "Hey"]
// "I read a " "[DAY]", "book monday" -> "i read a " "[day]", "book monday"
pretokenized
}
}
#[derive(Debug, Serialize, Deserialize)]
pub(super) struct AddedTokenWithId {
/// The id assigned to this token
pub id: u32,
#[serde(flatten)]
/// The target AddedToken
pub token: AddedToken,
}
impl Serialize for AddedVocabulary {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut added_tokens = self
.added_tokens_map_r
.iter()
.map(|(id, token)| AddedTokenWithId {
id: *id,
token: token.clone(),
})
.collect::<Vec<_>>();
// We need to have these added tokens ordered by ascending ID
added_tokens.sort_unstable_by_key(|o| o.id);
let mut vocabulary = serializer.serialize_seq(Some(added_tokens.len()))?;
for token in added_tokens {
vocabulary.serialize_element(&token)?;
}
vocabulary.end()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::normalizers::utils::Lowercase;
use crate::normalizers::NormalizerWrapper;
use crate::{OffsetReferential, OffsetType, Result, Token, Trainer};
use std::path::{Path, PathBuf};
#[derive(Serialize, Deserialize)]
struct ModelMock {
vocab: HashMap<String, u32>,
vocab_r: HashMap<u32, String>,
}
impl ModelMock {
pub fn new<I>(iter: I) -> Self
where
I: IntoIterator<Item = &'static (&'static str, u32)>,
{
let vocab: HashMap<String, u32> = iter
.into_iter()
.map(|&(tok, id)| (tok.to_string(), id))
.collect();
Self {
vocab_r: vocab
.iter()
.map(|(tok, id)| (*id, tok.to_owned()))
.collect(),
vocab,
}
}
}
fn simplify_output(result: &'_ PreTokenizedString) -> Vec<(&'_ str, Option<Vec<u32>>)> {
result
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, _, tokens)| {
(
s,
tokens
.as_ref()
.map(|t| t.iter().map(|t| t.id).collect::<Vec<_>>()),
)
})
.collect::<Vec<_>>()
}
struct TrainerMock;
impl Trainer for TrainerMock {
type Model = ModelMock;
fn should_show_progress(&self) -> bool {
true
}
fn train(&self, _model: &mut ModelMock) -> Result<Vec<AddedToken>> {
unimplemented!()
}
fn feed<I, S, F>(&mut self, _iterator: I, _process: F) -> Result<()>
where
I: Iterator<Item = S> + Send,
S: AsRef<str> + Send,
F: Fn(&str) -> Result<Vec<String>> + Sync,
{
unimplemented!()
}
}
impl Model for ModelMock {
type Trainer = TrainerMock;
fn tokenize(&self, _sequence: &str) -> Result<Vec<Token>> {
unimplemented!()
}
fn token_to_id(&self, token: &str) -> Option<u32> {
self.vocab.get(token).copied()
}
fn id_to_token(&self, id: u32) -> Option<String> {
self.vocab_r.get(&id).cloned()
}
fn get_vocab(&self) -> HashMap<String, u32> {
self.vocab.clone()
}
fn get_vocab_size(&self) -> usize {
self.vocab.len()
}
fn save(&self, _folder: &Path, _name: Option<&str>) -> Result<Vec<PathBuf>> {
unimplemented!()
}
fn get_trainer(&self) -> Self::Trainer {
TrainerMock
}
}
#[test]
fn can_add_tokens() {
let model = ModelMock::new(&[("test", 0), ("tost", 1)]);
let mut vocab = AddedVocabulary::new();
let normalizer: Option<&NormalizerWrapper> = None;
// Add tokens normally
assert_eq!(
vocab.add_tokens(
&[AddedToken::from("added_token_1", false)],
&model,
normalizer
),
1
);
let vocab_len: usize = vocab.len();
assert_eq!(vocab_len, 1);
// Does not add multiple time the same token
assert_eq!(
vocab.add_tokens(
&[
AddedToken::from("added_token_2", false),
AddedToken::from("added_token_2", false)
],
&model,
normalizer
),
1
);
assert_eq!(vocab.len(), 2);
// Also adds tokens already covered by the model
let added_token = AddedToken::from("test", false);
assert_eq!(
vocab.add_tokens(&[added_token.clone()], &model, normalizer),
1
);
assert_eq!(vocab.len(), 3);
assert_eq!(vocab.get_added_tokens_decoder()[&0], added_token);
}
#[test]
fn can_add_special_tokens() {
let model = ModelMock::new(&[("test", 0), ("tost", 1)]);
let mut vocab = AddedVocabulary::new();
let normalizer: Option<&NormalizerWrapper> = None;
// Add tokens normally
assert_eq!(
vocab.add_special_tokens(
&[AddedToken::from("added_token_1", true)],
&model,
normalizer
),
1
);
assert_eq!(vocab.len(), 1);
// Does not add multiple time the same token
assert_eq!(
vocab.add_special_tokens(
&[
AddedToken::from("added_token_2", true),
AddedToken::from("added_token_2", true)
],
&model,
normalizer
),
1
);
assert_eq!(vocab.len(), 2);
// Can add tokens already covered by the model
assert_eq!(
vocab.add_special_tokens(&[AddedToken::from("test", true)], &model, normalizer),
1
);
assert_eq!(vocab.len(), 3); // New token was added
assert!(vocab.is_special_token("test"));
assert_eq!(
*vocab.get_added_tokens_decoder(),
HashMap::from([
(0, AddedToken::from("test", true)),
(2, AddedToken::from("added_token_1", true)),
(3, AddedToken::from("added_token_2", true)),
])
);
assert!(vocab.added_tokens_map.contains_key("test"));
assert!(vocab.added_tokens_map_r.contains_key(&0));
vocab.add_tokens(
&[
AddedToken::from("tost", true),
AddedToken::from("another_two", false),
],
&model,
normalizer,
);
assert_eq!(vocab.len(), 5); // New token was added
assert_eq!(vocab.get_vocab()["another_two"], 4); // New token was added, but the index is not the length of the vocab
// Let's add an already added token again
assert_eq!(
vocab.add_special_tokens(&[AddedToken::from("another_two", true)], &model, normalizer),
1
);
assert_eq!(vocab.len(), 5); // Token was already there
assert_eq!(vocab.get_vocab()["another_two"], 4); // Token idx not changed
// Just checking that we can set the content of the string in rust
let mut token: AddedToken = AddedToken::from("Hey", false);
token.content = "hey".to_string();
assert_eq!(token.content, "hey"); // Token was already there
token.special = true;
assert!(token.special); // Token was already there
}
#[test]
fn can_extract_added_tokens() {
// Is able to extract both normal and special tokens
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer: Option<&NormalizerWrapper> = None;
vocab.add_tokens(
&[
AddedToken::from("my", false),
AddedToken::from("name", false),
],
&model,
normalizer,
);
vocab.add_special_tokens(
&[
AddedToken::from("[CLS]", true),
AddedToken::from("[SEP]", true),
],
&model,
normalizer,
);
let result = vocab.extract_and_normalize(normalizer, "[CLS] My name is Anthony [SEP]");
assert_eq!(
result
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, _, tokens)| (
s,
tokens
.as_ref()
.map(|t| t.iter().map(|t| t.id).collect::<Vec<_>>())
))
.collect::<Vec<_>>(),
vec![
("[CLS]", Some(vec![2])),
(" My ", None),
("name", Some(vec![1])),
(" is Anthony ", None),
("[SEP]", Some(vec![3]))
]
);
}
#[test]
fn options_use_cases() {
// Is able to extract both normal and special tokens, with various options (lstrip, rstrip,
// single_word, normalized)
let model = ModelMock::new(&[]);
let normalizer = Lowercase;
let mut vocab = AddedVocabulary::new();
vocab.add_tokens(
&[
AddedToken::from("my", false).lstrip(true).rstrip(true),
AddedToken::from("name", false),
AddedToken::from("ony", false).single_word(true),
],
&model,
Some(&normalizer),
);
vocab.add_special_tokens(
&[
AddedToken::from("[CLS]", true),
AddedToken::from("[SEP]", true),
],
&model,
Some(&normalizer),
);
let result =
vocab.extract_and_normalize(Some(&normalizer), "[CLS] My name is Anthony [SEP]");
assert_eq!(
simplify_output(&result),
vec![
("[CLS]", Some(vec![3])),
// This one includes both spaces because of the lstrip & rstrip
// And it matches because normalized == true
(" my ", Some(vec![0])),
("name", Some(vec![1])),
// `ony` is not extracted here thanks to single_word
(" is anthony ", None),
("[SEP]", Some(vec![4])),
]
);
}
#[test]
fn empty_matches() {
let vocab = AddedVocabulary::new();
let matches = vocab.find_matches("", &vocab.split_trie);
assert_eq!(matches, vec![(None, (0, 0))]);
}
#[test]
fn test_single_word_is_correct() {
// Is able to extract both normal and special tokens, with various options (lstrip, rstrip,
// single_word, normalized)
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
vocab.add_tokens(
&[AddedToken::from("<mask>", false).single_word(true)],
&model,
Some(&normalizer),
);
// Left, in the middle, non single world left, non single word right, end of sentence valid
let result = vocab.extract_and_normalize(
Some(&normalizer),
"<mask> My name <mask> A<mask> <mask>ony <mask>",
);
assert_eq!(
simplify_output(&result),
vec![
("<mask>", Some(vec![0])),
(" my name ", None),
("<mask>", Some(vec![0])),
(" a<mask> <mask>ony ", None),
("<mask>", Some(vec![0]))
]
);
}
#[test]
fn test_single_word_is_unicode_correct() {
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
assert_eq!(vocab.len(), 0);
vocab.add_tokens(
&[AddedToken::from("<mask>", false).single_word(true)],
&model,
Some(&normalizer),
);
let result = vocab.extract_and_normalize(Some(&normalizer), "<mask>, <mask>- ◌̰<mask>");
assert_eq!(
simplify_output(&result),
vec![
// Punctuation is not word
("<mask>", Some(vec![0])),
(", ", None),
// dash is not word
("<mask>", Some(vec![0])),
// This is unicode combining mark character and is word: https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
("- ◌̰<mask>", None),
]
);
}
#[test]
fn test_lstrip_unicode_space() {
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
vocab.add_tokens(
&[AddedToken::from("<mask>", false)
.lstrip(true)
.rstrip(true)
.single_word(true)],
&model,
Some(&normalizer),
);
let result = vocab
.extract_and_normalize(Some(&normalizer), "Hi <mask> there\t<mask>\t<mask>\u{2000}");
assert_eq!(
simplify_output(&result),
vec![
("hi", None),
// Regular space
(" <mask> ", Some(vec![0])),
("there", None),
// \t is a spacing character
("\t<mask>\t", Some(vec![0])),
// Non overlapping
// \u{2000} is mongolian vowel separator: https://jkorpela.fi/chars/spaces.html
("<mask>\u{2000}", Some(vec![0])),
]
);
}
#[test]
fn test_encode_special_tokens() {
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
vocab.add_tokens(
&[
AddedToken::from("<mask>", true)
.lstrip(true)
.rstrip(true)
.single_word(true),
AddedToken::from("ask>", false),
AddedToken::from("<pad>", true),
],
&model,
Some(&normalizer),
);
vocab.set_encode_special_tokens(true);
let result = vocab.extract_and_normalize(
Some(&normalizer),
"Hi <mask> there\t<mask>\t<mask>\u{2000} <pad> <mask><pad><pad>",
);
assert_eq!(
simplify_output(&result),
vec![
("hi <m", None),
("ask>", Some(vec![1])),
(" there\t<m", None),
("ask>", Some(vec![1])),
("\t<m", None),
("ask>", Some(vec![1])),
("\u{2000} <pad> <m", None),
("ask>", Some(vec![1])),
("<pad><pad>", None)
]
);
vocab.set_encode_special_tokens(false);
let result = vocab.extract_and_normalize(
Some(&normalizer),
"Hi <mask> there\t<mask>\t<mask>\u{2000} <pad> <mask><pad><pad>",
);
assert_eq!(
simplify_output(&result),
vec![
("hi", None),
(" <mask> ", Some(vec![0])),
("there", None),
("\t<mask>\t", Some(vec![0])),
("<mask>\u{2000} ", Some(vec![0])),
("<pad>", Some(vec![2])),
(" <mask>", Some(vec![0])),
("<pad>", Some(vec![2])),
("<pad>", Some(vec![2]))
]
);
}
}