1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
use crate::runtime::handle::Handle;
use crate::runtime::{blocking, driver, Callback, HistogramBuilder, Runtime};
use crate::util::rand::{RngSeed, RngSeedGenerator};
use std::fmt;
use std::io;
use std::time::Duration;
/// Builds Tokio Runtime with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The
/// Runtime is constructed by calling [`build`].
///
/// New instances of `Builder` are obtained via [`Builder::new_multi_thread`]
/// or [`Builder::new_current_thread`].
///
/// See function level documentation for details on the various configuration
/// settings.
///
/// [`build`]: method@Self::build
/// [`Builder::new_multi_thread`]: method@Self::new_multi_thread
/// [`Builder::new_current_thread`]: method@Self::new_current_thread
///
/// # Examples
///
/// ```
/// use tokio::runtime::Builder;
///
/// fn main() {
/// // build runtime
/// let runtime = Builder::new_multi_thread()
/// .worker_threads(4)
/// .thread_name("my-custom-name")
/// .thread_stack_size(3 * 1024 * 1024)
/// .build()
/// .unwrap();
///
/// // use runtime ...
/// }
/// ```
pub struct Builder {
/// Runtime type
kind: Kind,
/// Whether or not to enable the I/O driver
enable_io: bool,
nevents: usize,
/// Whether or not to enable the time driver
enable_time: bool,
/// Whether or not the clock should start paused.
start_paused: bool,
/// The number of worker threads, used by Runtime.
///
/// Only used when not using the current-thread executor.
worker_threads: Option<usize>,
/// Cap on thread usage.
max_blocking_threads: usize,
/// Name fn used for threads spawned by the runtime.
pub(super) thread_name: ThreadNameFn,
/// Stack size used for threads spawned by the runtime.
pub(super) thread_stack_size: Option<usize>,
/// Callback to run after each thread starts.
pub(super) after_start: Option<Callback>,
/// To run before each worker thread stops
pub(super) before_stop: Option<Callback>,
/// To run before each worker thread is parked.
pub(super) before_park: Option<Callback>,
/// To run after each thread is unparked.
pub(super) after_unpark: Option<Callback>,
/// Customizable keep alive timeout for `BlockingPool`
pub(super) keep_alive: Option<Duration>,
/// How many ticks before pulling a task from the global/remote queue?
///
/// When `None`, the value is unspecified and behavior details are left to
/// the scheduler. Each scheduler flavor could choose to either pick its own
/// default value or use some other strategy to decide when to poll from the
/// global queue. For example, the multi-threaded scheduler uses a
/// self-tuning strategy based on mean task poll times.
pub(super) global_queue_interval: Option<u32>,
/// How many ticks before yielding to the driver for timer and I/O events?
pub(super) event_interval: u32,
pub(super) local_queue_capacity: usize,
/// When true, the multi-threade scheduler LIFO slot should not be used.
///
/// This option should only be exposed as unstable.
pub(super) disable_lifo_slot: bool,
/// Specify a random number generator seed to provide deterministic results
pub(super) seed_generator: RngSeedGenerator,
/// When true, enables task poll count histogram instrumentation.
pub(super) metrics_poll_count_histogram_enable: bool,
/// Configures the task poll count histogram
pub(super) metrics_poll_count_histogram: HistogramBuilder,
#[cfg(tokio_unstable)]
pub(super) unhandled_panic: UnhandledPanic,
}
cfg_unstable! {
/// How the runtime should respond to unhandled panics.
///
/// Instances of `UnhandledPanic` are passed to `Builder::unhandled_panic`
/// to configure the runtime behavior when a spawned task panics.
///
/// See [`Builder::unhandled_panic`] for more details.
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum UnhandledPanic {
/// The runtime should ignore panics on spawned tasks.
///
/// The panic is forwarded to the task's [`JoinHandle`] and all spawned
/// tasks continue running normally.
///
/// This is the default behavior.
///
/// # Examples
///
/// ```
/// use tokio::runtime::{self, UnhandledPanic};
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_current_thread()
/// .unhandled_panic(UnhandledPanic::Ignore)
/// .build()
/// .unwrap();
///
/// let task1 = rt.spawn(async { panic!("boom"); });
/// let task2 = rt.spawn(async {
/// // This task completes normally
/// "done"
/// });
///
/// rt.block_on(async {
/// // The panic on the first task is forwarded to the `JoinHandle`
/// assert!(task1.await.is_err());
///
/// // The second task completes normally
/// assert!(task2.await.is_ok());
/// })
/// # }
/// ```
///
/// [`JoinHandle`]: struct@crate::task::JoinHandle
Ignore,
/// The runtime should immediately shutdown if a spawned task panics.
///
/// The runtime will immediately shutdown even if the panicked task's
/// [`JoinHandle`] is still available. All further spawned tasks will be
/// immediately dropped and call to [`Runtime::block_on`] will panic.
///
/// # Examples
///
/// ```should_panic
/// use tokio::runtime::{self, UnhandledPanic};
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_current_thread()
/// .unhandled_panic(UnhandledPanic::ShutdownRuntime)
/// .build()
/// .unwrap();
///
/// rt.spawn(async { panic!("boom"); });
/// rt.spawn(async {
/// // This task never completes.
/// });
///
/// rt.block_on(async {
/// // Do some work
/// # loop { tokio::task::yield_now().await; }
/// })
/// # }
/// ```
///
/// [`JoinHandle`]: struct@crate::task::JoinHandle
ShutdownRuntime,
}
}
pub(crate) type ThreadNameFn = std::sync::Arc<dyn Fn() -> String + Send + Sync + 'static>;
#[derive(Clone, Copy)]
pub(crate) enum Kind {
CurrentThread,
#[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
MultiThread,
#[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
MultiThreadAlt,
}
impl Builder {
/// Returns a new builder with the current thread scheduler selected.
///
/// Configuration methods can be chained on the return value.
///
/// To spawn non-`Send` tasks on the resulting runtime, combine it with a
/// [`LocalSet`].
///
/// [`LocalSet`]: crate::task::LocalSet
pub fn new_current_thread() -> Builder {
#[cfg(loom)]
const EVENT_INTERVAL: u32 = 4;
// The number `61` is fairly arbitrary. I believe this value was copied from golang.
#[cfg(not(loom))]
const EVENT_INTERVAL: u32 = 61;
Builder::new(Kind::CurrentThread, EVENT_INTERVAL)
}
cfg_not_wasi! {
/// Returns a new builder with the multi thread scheduler selected.
///
/// Configuration methods can be chained on the return value.
#[cfg(feature = "rt-multi-thread")]
#[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
pub fn new_multi_thread() -> Builder {
// The number `61` is fairly arbitrary. I believe this value was copied from golang.
Builder::new(Kind::MultiThread, 61)
}
cfg_unstable! {
/// Returns a new builder with the alternate multi thread scheduler
/// selected.
///
/// The alternate multi threaded scheduler is an in-progress
/// candidate to replace the existing multi threaded scheduler. It
/// currently does not scale as well to 16+ processors.
///
/// This runtime flavor is currently **not considered production
/// ready**.
///
/// Configuration methods can be chained on the return value.
#[cfg(feature = "rt-multi-thread")]
#[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
pub fn new_multi_thread_alt() -> Builder {
// The number `61` is fairly arbitrary. I believe this value was copied from golang.
Builder::new(Kind::MultiThreadAlt, 61)
}
}
}
/// Returns a new runtime builder initialized with default configuration
/// values.
///
/// Configuration methods can be chained on the return value.
pub(crate) fn new(kind: Kind, event_interval: u32) -> Builder {
Builder {
kind,
// I/O defaults to "off"
enable_io: false,
nevents: 1024,
// Time defaults to "off"
enable_time: false,
// The clock starts not-paused
start_paused: false,
// Read from environment variable first in multi-threaded mode.
// Default to lazy auto-detection (one thread per CPU core)
worker_threads: None,
max_blocking_threads: 512,
// Default thread name
thread_name: std::sync::Arc::new(|| "tokio-runtime-worker".into()),
// Do not set a stack size by default
thread_stack_size: None,
// No worker thread callbacks
after_start: None,
before_stop: None,
before_park: None,
after_unpark: None,
keep_alive: None,
// Defaults for these values depend on the scheduler kind, so we get them
// as parameters.
global_queue_interval: None,
event_interval,
#[cfg(not(loom))]
local_queue_capacity: 256,
#[cfg(loom)]
local_queue_capacity: 4,
seed_generator: RngSeedGenerator::new(RngSeed::new()),
#[cfg(tokio_unstable)]
unhandled_panic: UnhandledPanic::Ignore,
metrics_poll_count_histogram_enable: false,
metrics_poll_count_histogram: HistogramBuilder::default(),
disable_lifo_slot: false,
}
}
/// Enables both I/O and time drivers.
///
/// Doing this is a shorthand for calling `enable_io` and `enable_time`
/// individually. If additional components are added to Tokio in the future,
/// `enable_all` will include these future components.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_all()
/// .build()
/// .unwrap();
/// ```
pub fn enable_all(&mut self) -> &mut Self {
#[cfg(any(
feature = "net",
all(unix, feature = "process"),
all(unix, feature = "signal")
))]
self.enable_io();
#[cfg(feature = "time")]
self.enable_time();
self
}
/// Sets the number of worker threads the `Runtime` will use.
///
/// This can be any number above 0 though it is advised to keep this value
/// on the smaller side.
///
/// This will override the value read from environment variable `TOKIO_WORKER_THREADS`.
///
/// # Default
///
/// The default value is the number of cores available to the system.
///
/// When using the `current_thread` runtime this method has no effect.
///
/// # Examples
///
/// ## Multi threaded runtime with 4 threads
///
/// ```
/// use tokio::runtime;
///
/// // This will spawn a work-stealing runtime with 4 worker threads.
/// let rt = runtime::Builder::new_multi_thread()
/// .worker_threads(4)
/// .build()
/// .unwrap();
///
/// rt.spawn(async move {});
/// ```
///
/// ## Current thread runtime (will only run on the current thread via `Runtime::block_on`)
///
/// ```
/// use tokio::runtime;
///
/// // Create a runtime that _must_ be driven from a call
/// // to `Runtime::block_on`.
/// let rt = runtime::Builder::new_current_thread()
/// .build()
/// .unwrap();
///
/// // This will run the runtime and future on the current thread
/// rt.block_on(async move {});
/// ```
///
/// # Panics
///
/// This will panic if `val` is not larger than `0`.
#[track_caller]
pub fn worker_threads(&mut self, val: usize) -> &mut Self {
assert!(val > 0, "Worker threads cannot be set to 0");
self.worker_threads = Some(val);
self
}
/// Specifies the limit for additional threads spawned by the Runtime.
///
/// These threads are used for blocking operations like tasks spawned
/// through [`spawn_blocking`], this includes but is not limited to:
/// - [`fs`] operations
/// - dns resolution through [`ToSocketAddrs`]
/// - writing to [`Stdout`] or [`Stderr`]
/// - reading from [`Stdin`]
///
/// Unlike the [`worker_threads`], they are not always active and will exit
/// if left idle for too long. You can change this timeout duration with [`thread_keep_alive`].
///
/// It's recommended to not set this limit too low in order to avoid hanging on operations
/// requiring [`spawn_blocking`].
///
/// The default value is 512.
///
/// # Panics
///
/// This will panic if `val` is not larger than `0`.
///
/// # Upgrading from 0.x
///
/// In old versions `max_threads` limited both blocking and worker threads, but the
/// current `max_blocking_threads` does not include async worker threads in the count.
///
/// [`spawn_blocking`]: fn@crate::task::spawn_blocking
/// [`fs`]: mod@crate::fs
/// [`ToSocketAddrs`]: trait@crate::net::ToSocketAddrs
/// [`Stdout`]: struct@crate::io::Stdout
/// [`Stdin`]: struct@crate::io::Stdin
/// [`Stderr`]: struct@crate::io::Stderr
/// [`worker_threads`]: Self::worker_threads
/// [`thread_keep_alive`]: Self::thread_keep_alive
#[track_caller]
#[cfg_attr(docsrs, doc(alias = "max_threads"))]
pub fn max_blocking_threads(&mut self, val: usize) -> &mut Self {
assert!(val > 0, "Max blocking threads cannot be set to 0");
self.max_blocking_threads = val;
self
}
/// Sets name of threads spawned by the `Runtime`'s thread pool.
///
/// The default name is "tokio-runtime-worker".
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_name("my-pool")
/// .build();
/// # }
/// ```
pub fn thread_name(&mut self, val: impl Into<String>) -> &mut Self {
let val = val.into();
self.thread_name = std::sync::Arc::new(move || val.clone());
self
}
/// Sets a function used to generate the name of threads spawned by the `Runtime`'s thread pool.
///
/// The default name fn is `|| "tokio-runtime-worker".into()`.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # use std::sync::atomic::{AtomicUsize, Ordering};
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_name_fn(|| {
/// static ATOMIC_ID: AtomicUsize = AtomicUsize::new(0);
/// let id = ATOMIC_ID.fetch_add(1, Ordering::SeqCst);
/// format!("my-pool-{}", id)
/// })
/// .build();
/// # }
/// ```
pub fn thread_name_fn<F>(&mut self, f: F) -> &mut Self
where
F: Fn() -> String + Send + Sync + 'static,
{
self.thread_name = std::sync::Arc::new(f);
self
}
/// Sets the stack size (in bytes) for worker threads.
///
/// The actual stack size may be greater than this value if the platform
/// specifies minimal stack size.
///
/// The default stack size for spawned threads is 2 MiB, though this
/// particular stack size is subject to change in the future.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_stack_size(32 * 1024)
/// .build();
/// # }
/// ```
pub fn thread_stack_size(&mut self, val: usize) -> &mut Self {
self.thread_stack_size = Some(val);
self
}
/// Executes function `f` after each thread is started but before it starts
/// doing work.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let runtime = runtime::Builder::new_multi_thread()
/// .on_thread_start(|| {
/// println!("thread started");
/// })
/// .build();
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_start<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.after_start = Some(std::sync::Arc::new(f));
self
}
/// Executes function `f` before each thread stops.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let runtime = runtime::Builder::new_multi_thread()
/// .on_thread_stop(|| {
/// println!("thread stopping");
/// })
/// .build();
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_stop<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.before_stop = Some(std::sync::Arc::new(f));
self
}
/// Executes function `f` just before a thread is parked (goes idle).
/// `f` is called within the Tokio context, so functions like [`tokio::spawn`](crate::spawn)
/// can be called, and may result in this thread being unparked immediately.
///
/// This can be used to start work only when the executor is idle, or for bookkeeping
/// and monitoring purposes.
///
/// Note: There can only be one park callback for a runtime; calling this function
/// more than once replaces the last callback defined, rather than adding to it.
///
/// # Examples
///
/// ## Multithreaded executor
/// ```
/// # use std::sync::Arc;
/// # use std::sync::atomic::{AtomicBool, Ordering};
/// # use tokio::runtime;
/// # use tokio::sync::Barrier;
/// # pub fn main() {
/// let once = AtomicBool::new(true);
/// let barrier = Arc::new(Barrier::new(2));
///
/// let runtime = runtime::Builder::new_multi_thread()
/// .worker_threads(1)
/// .on_thread_park({
/// let barrier = barrier.clone();
/// move || {
/// let barrier = barrier.clone();
/// if once.swap(false, Ordering::Relaxed) {
/// tokio::spawn(async move { barrier.wait().await; });
/// }
/// }
/// })
/// .build()
/// .unwrap();
///
/// runtime.block_on(async {
/// barrier.wait().await;
/// })
/// # }
/// ```
/// ## Current thread executor
/// ```
/// # use std::sync::Arc;
/// # use std::sync::atomic::{AtomicBool, Ordering};
/// # use tokio::runtime;
/// # use tokio::sync::Barrier;
/// # pub fn main() {
/// let once = AtomicBool::new(true);
/// let barrier = Arc::new(Barrier::new(2));
///
/// let runtime = runtime::Builder::new_current_thread()
/// .on_thread_park({
/// let barrier = barrier.clone();
/// move || {
/// let barrier = barrier.clone();
/// if once.swap(false, Ordering::Relaxed) {
/// tokio::spawn(async move { barrier.wait().await; });
/// }
/// }
/// })
/// .build()
/// .unwrap();
///
/// runtime.block_on(async {
/// barrier.wait().await;
/// })
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_park<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.before_park = Some(std::sync::Arc::new(f));
self
}
/// Executes function `f` just after a thread unparks (starts executing tasks).
///
/// This is intended for bookkeeping and monitoring use cases; note that work
/// in this callback will increase latencies when the application has allowed one or
/// more runtime threads to go idle.
///
/// Note: There can only be one unpark callback for a runtime; calling this function
/// more than once replaces the last callback defined, rather than adding to it.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let runtime = runtime::Builder::new_multi_thread()
/// .on_thread_unpark(|| {
/// println!("thread unparking");
/// })
/// .build();
///
/// runtime.unwrap().block_on(async {
/// tokio::task::yield_now().await;
/// println!("Hello from Tokio!");
/// })
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_unpark<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.after_unpark = Some(std::sync::Arc::new(f));
self
}
/// Creates the configured `Runtime`.
///
/// The returned `Runtime` instance is ready to spawn tasks.
///
/// # Examples
///
/// ```
/// use tokio::runtime::Builder;
///
/// let rt = Builder::new_multi_thread().build().unwrap();
///
/// rt.block_on(async {
/// println!("Hello from the Tokio runtime");
/// });
/// ```
pub fn build(&mut self) -> io::Result<Runtime> {
match &self.kind {
Kind::CurrentThread => self.build_current_thread_runtime(),
#[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
Kind::MultiThread => self.build_threaded_runtime(),
#[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
Kind::MultiThreadAlt => self.build_alt_threaded_runtime(),
}
}
fn get_cfg(&self) -> driver::Cfg {
driver::Cfg {
enable_pause_time: match self.kind {
Kind::CurrentThread => true,
#[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
Kind::MultiThread => false,
#[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
Kind::MultiThreadAlt => false,
},
enable_io: self.enable_io,
enable_time: self.enable_time,
start_paused: self.start_paused,
nevents: self.nevents,
}
}
/// Sets a custom timeout for a thread in the blocking pool.
///
/// By default, the timeout for a thread is set to 10 seconds. This can
/// be overridden using `.thread_keep_alive()`.
///
/// # Example
///
/// ```
/// # use tokio::runtime;
/// # use std::time::Duration;
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_keep_alive(Duration::from_millis(100))
/// .build();
/// # }
/// ```
pub fn thread_keep_alive(&mut self, duration: Duration) -> &mut Self {
self.keep_alive = Some(duration);
self
}
/// Sets the number of scheduler ticks after which the scheduler will poll the global
/// task queue.
///
/// A scheduler "tick" roughly corresponds to one `poll` invocation on a task.
///
/// By default the global queue interval is 31 for the current-thread scheduler. Please see
/// [the module documentation] for the default behavior of the multi-thread scheduler.
///
/// Schedulers have a local queue of already-claimed tasks, and a global queue of incoming
/// tasks. Setting the interval to a smaller value increases the fairness of the scheduler,
/// at the cost of more synchronization overhead. That can be beneficial for prioritizing
/// getting started on new work, especially if tasks frequently yield rather than complete
/// or await on further I/O. Conversely, a higher value prioritizes existing work, and
/// is a good choice when most tasks quickly complete polling.
///
/// [the module documentation]: crate::runtime#multi-threaded-runtime-behavior-at-the-time-of-writing
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .global_queue_interval(31)
/// .build();
/// # }
/// ```
pub fn global_queue_interval(&mut self, val: u32) -> &mut Self {
self.global_queue_interval = Some(val);
self
}
/// Sets the number of scheduler ticks after which the scheduler will poll for
/// external events (timers, I/O, and so on).
///
/// A scheduler "tick" roughly corresponds to one `poll` invocation on a task.
///
/// By default, the event interval is `61` for all scheduler types.
///
/// Setting the event interval determines the effective "priority" of delivering
/// these external events (which may wake up additional tasks), compared to
/// executing tasks that are currently ready to run. A smaller value is useful
/// when tasks frequently spend a long time in polling, or frequently yield,
/// which can result in overly long delays picking up I/O events. Conversely,
/// picking up new events requires extra synchronization and syscall overhead,
/// so if tasks generally complete their polling quickly, a higher event interval
/// will minimize that overhead while still keeping the scheduler responsive to
/// events.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .event_interval(31)
/// .build();
/// # }
/// ```
pub fn event_interval(&mut self, val: u32) -> &mut Self {
self.event_interval = val;
self
}
cfg_unstable! {
/// Configure how the runtime responds to an unhandled panic on a
/// spawned task.
///
/// By default, an unhandled panic (i.e. a panic not caught by
/// [`std::panic::catch_unwind`]) has no impact on the runtime's
/// execution. The panic is error value is forwarded to the task's
/// [`JoinHandle`] and all other spawned tasks continue running.
///
/// The `unhandled_panic` option enables configuring this behavior.
///
/// * `UnhandledPanic::Ignore` is the default behavior. Panics on
/// spawned tasks have no impact on the runtime's execution.
/// * `UnhandledPanic::ShutdownRuntime` will force the runtime to
/// shutdown immediately when a spawned task panics even if that
/// task's `JoinHandle` has not been dropped. All other spawned tasks
/// will immediately terminate and further calls to
/// [`Runtime::block_on`] will panic.
///
/// # Unstable
///
/// This option is currently unstable and its implementation is
/// incomplete. The API may change or be removed in the future. See
/// tokio-rs/tokio#4516 for more details.
///
/// # Examples
///
/// The following demonstrates a runtime configured to shutdown on
/// panic. The first spawned task panics and results in the runtime
/// shutting down. The second spawned task never has a chance to
/// execute. The call to `block_on` will panic due to the runtime being
/// forcibly shutdown.
///
/// ```should_panic
/// use tokio::runtime::{self, UnhandledPanic};
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_current_thread()
/// .unhandled_panic(UnhandledPanic::ShutdownRuntime)
/// .build()
/// .unwrap();
///
/// rt.spawn(async { panic!("boom"); });
/// rt.spawn(async {
/// // This task never completes.
/// });
///
/// rt.block_on(async {
/// // Do some work
/// # loop { tokio::task::yield_now().await; }
/// })
/// # }
/// ```
///
/// [`JoinHandle`]: struct@crate::task::JoinHandle
pub fn unhandled_panic(&mut self, behavior: UnhandledPanic) -> &mut Self {
self.unhandled_panic = behavior;
self
}
/// Disables the LIFO task scheduler heuristic.
///
/// The multi-threaded scheduler includes a heuristic for optimizing
/// message-passing patterns. This heuristic results in the **last**
/// scheduled task being polled first.
///
/// To implement this heuristic, each worker thread has a slot which
/// holds the task that should be polled next. However, this slot cannot
/// be stolen by other worker threads, which can result in lower total
/// throughput when tasks tend to have longer poll times.
///
/// This configuration option will disable this heuristic resulting in
/// all scheduled tasks being pushed into the worker-local queue, which
/// is stealable.
///
/// Consider trying this option when the task "scheduled" time is high
/// but the runtime is underutilized. Use tokio-rs/tokio-metrics to
/// collect this data.
///
/// # Unstable
///
/// This configuration option is considered a workaround for the LIFO
/// slot not being stealable. When the slot becomes stealable, we will
/// revisit whether or not this option is necessary. See
/// tokio-rs/tokio#4941.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .disable_lifo_slot()
/// .build()
/// .unwrap();
/// ```
pub fn disable_lifo_slot(&mut self) -> &mut Self {
self.disable_lifo_slot = true;
self
}
/// Specifies the random number generation seed to use within all
/// threads associated with the runtime being built.
///
/// This option is intended to make certain parts of the runtime
/// deterministic (e.g. the [`tokio::select!`] macro). In the case of
/// [`tokio::select!`] it will ensure that the order that branches are
/// polled is deterministic.
///
/// In addition to the code specifying `rng_seed` and interacting with
/// the runtime, the internals of Tokio and the Rust compiler may affect
/// the sequences of random numbers. In order to ensure repeatable
/// results, the version of Tokio, the versions of all other
/// dependencies that interact with Tokio, and the Rust compiler version
/// should also all remain constant.
///
/// # Examples
///
/// ```
/// # use tokio::runtime::{self, RngSeed};
/// # pub fn main() {
/// let seed = RngSeed::from_bytes(b"place your seed here");
/// let rt = runtime::Builder::new_current_thread()
/// .rng_seed(seed)
/// .build();
/// # }
/// ```
///
/// [`tokio::select!`]: crate::select
pub fn rng_seed(&mut self, seed: RngSeed) -> &mut Self {
self.seed_generator = RngSeedGenerator::new(seed);
self
}
}
cfg_metrics! {
/// Enables tracking the distribution of task poll times.
///
/// Task poll times are not instrumented by default as doing so requires
/// calling [`Instant::now()`] twice per task poll, which could add
/// measurable overhead. Use the [`Handle::metrics()`] to access the
/// metrics data.
///
/// The histogram uses fixed bucket sizes. In other words, the histogram
/// buckets are not dynamic based on input values. Use the
/// `metrics_poll_count_histogram_` builder methods to configure the
/// histogram details.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_metrics_poll_count_histogram()
/// .build()
/// .unwrap();
/// # // Test default values here
/// # fn us(n: u64) -> std::time::Duration { std::time::Duration::from_micros(n) }
/// # let m = rt.handle().metrics();
/// # assert_eq!(m.poll_count_histogram_num_buckets(), 10);
/// # assert_eq!(m.poll_count_histogram_bucket_range(0), us(0)..us(100));
/// # assert_eq!(m.poll_count_histogram_bucket_range(1), us(100)..us(200));
/// ```
///
/// [`Handle::metrics()`]: crate::runtime::Handle::metrics
/// [`Instant::now()`]: std::time::Instant::now
pub fn enable_metrics_poll_count_histogram(&mut self) -> &mut Self {
self.metrics_poll_count_histogram_enable = true;
self
}
/// Sets the histogram scale for tracking the distribution of task poll
/// times.
///
/// Tracking the distribution of task poll times can be done using a
/// linear or log scale. When using linear scale, each histogram bucket
/// will represent the same range of poll times. When using log scale,
/// each histogram bucket will cover a range twice as big as the
/// previous bucket.
///
/// **Default:** linear scale.
///
/// # Examples
///
/// ```
/// use tokio::runtime::{self, HistogramScale};
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_metrics_poll_count_histogram()
/// .metrics_poll_count_histogram_scale(HistogramScale::Log)
/// .build()
/// .unwrap();
/// ```
pub fn metrics_poll_count_histogram_scale(&mut self, histogram_scale: crate::runtime::HistogramScale) -> &mut Self {
self.metrics_poll_count_histogram.scale = histogram_scale;
self
}
/// Sets the histogram resolution for tracking the distribution of task
/// poll times.
///
/// The resolution is the histogram's first bucket's range. When using a
/// linear histogram scale, each bucket will cover the same range. When
/// using a log scale, each bucket will cover a range twice as big as
/// the previous bucket. In the log case, the resolution represents the
/// smallest bucket range.
///
/// Note that, when using log scale, the resolution is rounded up to the
/// nearest power of 2 in nanoseconds.
///
/// **Default:** 100 microseconds.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
/// use std::time::Duration;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_metrics_poll_count_histogram()
/// .metrics_poll_count_histogram_resolution(Duration::from_micros(100))
/// .build()
/// .unwrap();
/// ```
pub fn metrics_poll_count_histogram_resolution(&mut self, resolution: Duration) -> &mut Self {
assert!(resolution > Duration::from_secs(0));
// Sanity check the argument and also make the cast below safe.
assert!(resolution <= Duration::from_secs(1));
let resolution = resolution.as_nanos() as u64;
self.metrics_poll_count_histogram.resolution = resolution;
self
}
/// Sets the number of buckets for the histogram tracking the
/// distribution of task poll times.
///
/// The last bucket tracks all greater values that fall out of other
/// ranges. So, configuring the histogram using a linear scale,
/// resolution of 50ms, and 10 buckets, the 10th bucket will track task
/// polls that take more than 450ms to complete.
///
/// **Default:** 10
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_metrics_poll_count_histogram()
/// .metrics_poll_count_histogram_buckets(15)
/// .build()
/// .unwrap();
/// ```
pub fn metrics_poll_count_histogram_buckets(&mut self, buckets: usize) -> &mut Self {
self.metrics_poll_count_histogram.num_buckets = buckets;
self
}
}
cfg_loom! {
pub(crate) fn local_queue_capacity(&mut self, value: usize) -> &mut Self {
assert!(value.is_power_of_two());
self.local_queue_capacity = value;
self
}
}
fn build_current_thread_runtime(&mut self) -> io::Result<Runtime> {
use crate::runtime::scheduler::{self, CurrentThread};
use crate::runtime::{runtime::Scheduler, Config};
let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?;
// Blocking pool
let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads);
let blocking_spawner = blocking_pool.spawner().clone();
// Generate a rng seed for this runtime.
let seed_generator_1 = self.seed_generator.next_generator();
let seed_generator_2 = self.seed_generator.next_generator();
// And now put a single-threaded scheduler on top of the timer. When
// there are no futures ready to do something, it'll let the timer or
// the reactor to generate some new stimuli for the futures to continue
// in their life.
let (scheduler, handle) = CurrentThread::new(
driver,
driver_handle,
blocking_spawner,
seed_generator_2,
Config {
before_park: self.before_park.clone(),
after_unpark: self.after_unpark.clone(),
global_queue_interval: self.global_queue_interval,
event_interval: self.event_interval,
local_queue_capacity: self.local_queue_capacity,
#[cfg(tokio_unstable)]
unhandled_panic: self.unhandled_panic.clone(),
disable_lifo_slot: self.disable_lifo_slot,
seed_generator: seed_generator_1,
metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(),
},
);
let handle = Handle {
inner: scheduler::Handle::CurrentThread(handle),
};
Ok(Runtime::from_parts(
Scheduler::CurrentThread(scheduler),
handle,
blocking_pool,
))
}
fn metrics_poll_count_histogram_builder(&self) -> Option<HistogramBuilder> {
if self.metrics_poll_count_histogram_enable {
Some(self.metrics_poll_count_histogram.clone())
} else {
None
}
}
}
cfg_io_driver! {
impl Builder {
/// Enables the I/O driver.
///
/// Doing this enables using net, process, signal, and some I/O types on
/// the runtime.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_io()
/// .build()
/// .unwrap();
/// ```
pub fn enable_io(&mut self) -> &mut Self {
self.enable_io = true;
self
}
/// Enables the I/O driver and configures the max number of events to be
/// processed per tick.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_current_thread()
/// .enable_io()
/// .max_io_events_per_tick(1024)
/// .build()
/// .unwrap();
/// ```
pub fn max_io_events_per_tick(&mut self, capacity: usize) -> &mut Self {
self.nevents = capacity;
self
}
}
}
cfg_time! {
impl Builder {
/// Enables the time driver.
///
/// Doing this enables using `tokio::time` on the runtime.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_time()
/// .build()
/// .unwrap();
/// ```
pub fn enable_time(&mut self) -> &mut Self {
self.enable_time = true;
self
}
}
}
cfg_test_util! {
impl Builder {
/// Controls if the runtime's clock starts paused or advancing.
///
/// Pausing time requires the current-thread runtime; construction of
/// the runtime will panic otherwise.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_current_thread()
/// .enable_time()
/// .start_paused(true)
/// .build()
/// .unwrap();
/// ```
pub fn start_paused(&mut self, start_paused: bool) -> &mut Self {
self.start_paused = start_paused;
self
}
}
}
cfg_rt_multi_thread! {
impl Builder {
fn build_threaded_runtime(&mut self) -> io::Result<Runtime> {
use crate::loom::sys::num_cpus;
use crate::runtime::{Config, runtime::Scheduler};
use crate::runtime::scheduler::{self, MultiThread};
let core_threads = self.worker_threads.unwrap_or_else(num_cpus);
let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?;
// Create the blocking pool
let blocking_pool =
blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads);
let blocking_spawner = blocking_pool.spawner().clone();
// Generate a rng seed for this runtime.
let seed_generator_1 = self.seed_generator.next_generator();
let seed_generator_2 = self.seed_generator.next_generator();
let (scheduler, handle, launch) = MultiThread::new(
core_threads,
driver,
driver_handle,
blocking_spawner,
seed_generator_2,
Config {
before_park: self.before_park.clone(),
after_unpark: self.after_unpark.clone(),
global_queue_interval: self.global_queue_interval,
event_interval: self.event_interval,
local_queue_capacity: self.local_queue_capacity,
#[cfg(tokio_unstable)]
unhandled_panic: self.unhandled_panic.clone(),
disable_lifo_slot: self.disable_lifo_slot,
seed_generator: seed_generator_1,
metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(),
},
);
let handle = Handle { inner: scheduler::Handle::MultiThread(handle) };
// Spawn the thread pool workers
let _enter = handle.enter();
launch.launch();
Ok(Runtime::from_parts(Scheduler::MultiThread(scheduler), handle, blocking_pool))
}
cfg_unstable! {
fn build_alt_threaded_runtime(&mut self) -> io::Result<Runtime> {
use crate::loom::sys::num_cpus;
use crate::runtime::{Config, runtime::Scheduler};
use crate::runtime::scheduler::MultiThreadAlt;
let core_threads = self.worker_threads.unwrap_or_else(num_cpus);
let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?;
// Create the blocking pool
let blocking_pool =
blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads);
let blocking_spawner = blocking_pool.spawner().clone();
// Generate a rng seed for this runtime.
let seed_generator_1 = self.seed_generator.next_generator();
let seed_generator_2 = self.seed_generator.next_generator();
let (scheduler, handle) = MultiThreadAlt::new(
core_threads,
driver,
driver_handle,
blocking_spawner,
seed_generator_2,
Config {
before_park: self.before_park.clone(),
after_unpark: self.after_unpark.clone(),
global_queue_interval: self.global_queue_interval,
event_interval: self.event_interval,
local_queue_capacity: self.local_queue_capacity,
#[cfg(tokio_unstable)]
unhandled_panic: self.unhandled_panic.clone(),
disable_lifo_slot: self.disable_lifo_slot,
seed_generator: seed_generator_1,
metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(),
},
);
Ok(Runtime::from_parts(Scheduler::MultiThreadAlt(scheduler), handle, blocking_pool))
}
}
}
}
impl fmt::Debug for Builder {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Builder")
.field("worker_threads", &self.worker_threads)
.field("max_blocking_threads", &self.max_blocking_threads)
.field(
"thread_name",
&"<dyn Fn() -> String + Send + Sync + 'static>",
)
.field("thread_stack_size", &self.thread_stack_size)
.field("after_start", &self.after_start.as_ref().map(|_| "..."))
.field("before_stop", &self.before_stop.as_ref().map(|_| "..."))
.field("before_park", &self.before_park.as_ref().map(|_| "..."))
.field("after_unpark", &self.after_unpark.as_ref().map(|_| "..."))
.finish()
}
}